
Manual for i.MX-based Hardware and
BSPs

This guide is intended to help developers setup, use and integrate the

hardware and software provided by Kontron Electronics, that is based on the

NXP i.MX SoCs.

For a more generic overview of the platform-independent parts of the

software environment please see the "Main Documentation".

BL i.MX8MM Boards and Demo Kits

For an introduction to the i.MX8MM boards visit the Getting Started page as

well as the Board Overview and Using the System pages.

Attention: Preliminary State

This documentation and the software BSP is in an early state of development. All parts are

subject to change without notice. For more information on the development state, please see

the Release Notes and the Known Issues.

Mainline Platform Support & Vendor BSP

For our i.MX6 and i.MX8 hardware we are aiming at using mainline components as much as

possible. In contrast to the vendor BSP, that heavily relies on unmaintained and unstable

code, we are constantly working towards having our boards supported upstream in major

software components like the Linux kernel and the U-Boot bootloader.

This means that we benefit from the work of the communities and developers around the

world and join them with our own efforts. But it also means that support for certain features

of the platform won't be available until an acceptable and stable solution has been found

within the communities.

https://docs.kontron-electronics.de/yocto-ktn/yocto-ktn

BSP Overview

Hardware

Kontron Electronics offers Eval-Kits (EVKs) and devices ready for integrating

into your product to get you started quickly with your product and application

design. The abilities of your customized hardware can be fitted to your specific

needs.

Here are some general specs for our standard i.MX hardware. Please navigate

to the description of the specific hardware you are using and visit our website

for more information about the available boards, modules and devices.

SoCs

SoCs Cores NXP

Website

NXP i.MX6 Solo ARM® Cortex®-A9 @ 800 MHz Link

NXP i.MX6 Dual 2 x ARM® Cortex®-A9 @ 1200 MHz Link

NXP i.MX6

UltraLite

ARM® Cortex®-A7 @ 528 MHz Link

NXP i.MX6 ULL ARM® Cortex®-A7 @ 792 MHz Link

NXP i.MX8M Mini 4 x ARM® Cortex®-A53 @ 1.8 GHz, ARM® Cortex®-M4

@ 400 MHz

Link

https://www.kontron-electronics.de/produkte/
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6solo-processors-single-core-multimedia-3d-graphics-arm-cortex-a9-core:i.MX6S
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6solo-processors-single-core-multimedia-3d-graphics-arm-cortex-a9-core:i.MX6D
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6ultralite-processor-low-power-secure-arm-cortex-a7-core:i.MX6UL
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i.mx-applications-processors/i.mx-6-processors/i.mx-6ultralite-processor-low-power-secure-arm-cortex-a7-core:i.MX6ULL
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i.mx-applications-processors/i.mx-8-processors/i.mx-8m-mini-arm-cortex-a53-cortex-m4-audio-voice-video:i.MX8MMINI

On-Board Memory

Interfaces

Miscellaneous

Software

U-Boot 2020.01 bootloader

Linux 5.4 mainline kernel with board adaptations

Memory Type Size

DDR3 or (LP)DDR4 RAM up to 2GB

SPI NOR Flash up to 2MB

Parallel or Serial NAND up to 512MB

eMMC up to 4GB

Interface Standard/Specs Ports

Ethernet 100/1000 MBit/s up to 2

Display RGB, LVDS, HDMI, DSI up to 2

USB Host, Device, OTG up to 4

Serial RS232, RS485, CAN, I2C up to 1 each

Spec Value

Supply Voltage 24V DC

•

•

Linux userland based on the Yocto reference distribution "Poky"

GStreamer multimedia framework with hardware acceleration

Qt 5.x based on eglfs with OpenGL and QML/QtQuick support

•

•

•

Yocto Build System

For generic information on how to setup and use the Yocto BSPs provided by

KED, please read the main documentation first.

Repository and Directory Structure

This is how the directory tree with the most important files and directories of

the i.MX BSP will look like:

yocto-ktn # the core repository
│
├── build-ktn-imx # the build repository for the i.MX BSP
│ │
│ ├── conf
│ │ ├── repo.conf # specifies the revisions of all layers
│ │ ├── local.conf # specifies local settings for the
build
│ │ └── bblayers.conf # specifies all layers that will be
parsed by bitbake
│ │
│ └── tmp # contains all of the build data
│ ├── deploy
│ │ ├─ images # contains image files and binaries
for the target
│ │ ├─ ipk # contains packages
│ │ ├─ licenses # contains licenses of the packages in
use
│ │ └─ sdk # contains SDK and toolchain binaries
│ │
│ └── work
│ └─ ... # contains all source and build files
for the packages
│
├── layers # contains all meta layers with recipes
│ │ # (each one is a git repository)
│ │
│ ├ poky # contains the Yocto/Poky build system
and meta data
│ ├ meta-openembedded # contains basic meta layers
│ ├ meta-ktn # contains basic Kontron adaptations
and modifications

https://docs.kontron-electronics.de/yocto-ktn/yocto-ktn/build-system.html

Example Setup

This is an example for setting up and running a build for the kontron-mx6ul

machine. For more details on each of these steps, please visit the main

documentation. For information and examples on your specific hardware,

please look in the hardware section.

| ├ meta-ktn-imx # contains Kontron platform
adaptations and modifications for i.MX
| ├ meta-freescale # contains NXP platform adaptations
and modifications
│ └ ...
│
├── scripts # contains scripts to automate certain
tasks
├── downloads # contains all the files downloaded by
the fetcher
│ # (shared by all builds)
├── sstate-cache # contains the sstate cache (shared by
all builds)
└── init-env # this is a script to initialize the
build environment

move to your working directory
cd ~

clone the core repository
git clone https://git.kontron-electronics.de/yocto-ktn/yocto-
ktn.git

clone the build repository for NXP i.MX and initialize the build
environment
for the 'kontron-mx6ul' machine configuration.
. init-env -u -m kontron-mx6ul build-ktn-imx

build an image including the Qt5 libraries and demos for the
target hardware
bitbake image-ktn-qt

https://docs.kontron-electronics.de/yocto-ktn/yocto-ktn/build-system.html
https://docs.kontron-electronics.de/yocto-ktn/yocto-ktn/build-system.html

Modify the BSP

This section provides some examples for modifying the BSP for i.MX. For

further general information on how to modify the BSPs, please visit the main

documentation. For information and examples on your specific hardware,

please look in the hardware section.

Modifying the Kernel Configuration

With Bitbake

In a 'devshell'

use menuconfig to change the configuration and save them
in .config
bitbake virtual/kernel -c menuconfig

rebuild the kernel (and the image if needed) to test the changes
bitbake virtual/kernel -C compile -f
bitbake image-ktn

create a reduced defconfig
bitbake virtual/kernel -c savedefconfig

make the changes persistent by copying the defconfig to your
meta-layer
cp ~/yocto-ktn/build-ktn-imx/tmp/work/kontron_mx6ul-ktn-linux-
gnueabi/linux-ktn/5.4-r0/build/defconfig ~/yocto-ktn/layers/meta-
<customer>/recipes-kernel/linux/linux-ktn/mx6/defconfig

open a devshell for the kernel
bitbake virtual/kernel -c devshell

use menuconfig to change the configuration and save them
in .config
make menuconfig

build the kernel to test the changes
make

create a reduced defconfig
make savedefconfig

https://docs.kontron-electronics.de/yocto-ktn/yocto-ktn/modify-bsp.html
https://docs.kontron-electronics.de/yocto-ktn/yocto-ktn/modify-bsp.html

Modifying the Kernel Code

make the changes persistent by copying the defconfig to your
meta-layer
cp ~/yocto-ktn/build-ktn-imx/tmp/work/kontron_mx6ul-ktn-linux-
gnueabi/linux-ktn/5.4-r0/build/defconfig ~/yocto-ktn/layers/meta-
<customer>/recipes-kernel/linux/linux-ktn/mx6/defconfig

start devtool to create a temporary workspace for the kernel
source code
devtool modify linux-ktn

modify the code and rebuild with
bitbake linux-ktn

test your changes, create patches if necessary and reset the
recipe with
devtool reset linux-ktn

Booting an Image

Boot Chain Overview

After powering up the device, the BootROM code in the i.MX tries to load a first

stage bootloader which is U-Boot SPL in our case. From there, the chain

continues with loading of TF-A (Trusted-Firmware-ARM, only for i.MX8MM)

and U-Boot. Finally we load the Linux Kernel and Devicetrees.

* only i.MX8MM

SPL

The U-Boot SPL brings up the most important parts of the SoC, such as the core

and the DDR-RAM. Afterwards it loads a FIT image from a fixed offset on the

boot device (NOR, SD card, eMMC) to the DDR RAM and jumps to the TF-A or U-

Boot entrypoint. It also prints a few lines to the debug UART interface. You

should see something like the following:

Boot

Stage

Name Description Filename in

Yocto-Build

Image

Format

1 BootROM Fixed program in the

SoC

- -

2 U-Boot

SPL

Secondary Program

Loader

flash.bin Raw

Binary

3* TF-A BL31 Trusted-Firmware-

ARM BL31

u-boot.itb FIT

4 U-Boot Main Bootloader u-boot.itb FIT

5 Linux Linux Kernel +

Devicetrees

fitImage FIT

TF-A BL31 (only i.MX8MM)

The TF-A BL31 is run at EL3 (exception level 3). It sets up the default security

settings for peripherals and can act as a secure monitor for code running in the

non-secure world (Linux). For more information about the TF-A and the overall

firmware design, see the TF-A documentation.

In our configuration TF-A BL31 also prints a few lines to the debug UART

interface. You should see something like the following:

U-Boot

U-Boot acts as a main bootloader. It has a command line interface and runs

from DDR RAM. It has support for filesystems and many other things. The

typical output from U-Boot will look something like this:

U-Boot SPL 2020.01_ktn-zeus_3.0.0-alpha2-dirty+gc6e6927046 (Feb 20
2020 - 10:00:34 +0000)
1GB RAM detected, assuming Kontron N801x module...
Normal Boot
Trying to boot from MMC2

NOTICE: BL31: v2.2(release):v2.2-dirty
NOTICE: BL31: Built : 10:25:02, Feb 13 2020

U-Boot 2020.01_ktn-zeus_3.0.0-alpha2-dirty+gc6e6927046 (Feb 20
2020 - 10:00:34 +0000)

CPU: Freescale i.MX8MMQ rev1.0 at 1200 MHz
Reset cause: POR
Model: Kontron i.MX8MM N8011 S
DRAM: 1 GiB
MMC: FSL_SDHC: 0, FSL_SDHC: 1
In: serial
Out: serial
Err: serial
Net: eth0: ethernet@30be0000 [PRIME]

https://trustedfirmware-a.readthedocs.io/en/latest/design/firmware-design.html

Booting from SD Card

You can use the prebuilt images from files.kontron-electronics.de or the

images from your Yocto build. To write the image onto the SD card using a Linux

host, use the following command and adjust the image file name and the

device filename for the SD card to your needs.

System Boot diagram A/B Partition

The Flash Layout described in the chapter Flash Layout + the provided

bootscripts follow the Boot-diagram below.

Danger

The usage of the dd command in combination with sudo can be dangerous. If you use wrong

parameters, this might cause severe loss of data on your hard disk or other drives!

gunzip -c image-ktn-kontron-mx8mm-ktn-zeus-v3.0.0-
alpha2-20200203.rootfs.wic.gz | sudo dd of=/dev/<mmcdevice> bs=1M
iflag=fullblock oflag=direct conv=fsync status=progress

https://files.kontron-electronics.de/imx/

Using the Internal Flash Storage

As described in the chapter Booting an Image you can generate a SD card for

your device and use it during development. When you are interested in using

the internal flash (SPI-NOR, eMMC, NAND) then continue reading. In the

following it is described how to setup your device with a A/B partition scheme

so that you will be able to update your system seamlessly in the future.

Partition Layout

Kontron i.MX8MM

Component Storage Linux

Devicenode

Size Filesystem

Linux Root-Filesystem A/B

Layout, Boot Volume and

Data Volume

eMMC,

NAND

/dev/

mmcblk0pX

32GB ext4

U-Boot NOR /dev/mtd0 1920

KiB

raw

U-Boot env (copy 1) NOR /dev/mtd1 64

KiB

raw

U-Boot env (copy 2) NOR /dev/mtd2 64

KiB

raw

Kontron i.MX6UL

Factory Setup / Initial Partitioning

if you have a Kontron Demoboard with Software release version greater than

v5.0.0 initial partitioning is already completed in factory. You don't have to

repeat the step. Just skip to the chapter Perform seamless system Update

Install Images

using ptool

For factory setup you need the images listed below. The images are created

during the Yocto build when executing bitbake image-ktn or bitbake

bitbake image-ktn-qt . The images are then deployed to the directory ~/

yocto-ktn/build-ktn-imx/tmp/deploy/$MACHINE/images .

Component Storage Linux

Devicenode

Size Filesystem

Linux Root-Filesystem A/B

Layout, Boot Volume and

Data Volume

eMMC,

NAND

/dev/mtd0 512MB ubifs

U-Boot SPL NOR /dev/mtd1 896

KiB

raw

U-Boot env (copy 1) NOR /dev/mtd2 64 KiB raw

U-Boot env (copy 2) NOR /dev/mtd3 64 KiB raw

Copy the images into the directory /home/root/fw/ on your device.

Flash bootloader binaries and environment

using Swupdate (only Kontron i.MX8MM)

Initial setup is also implemented for i.MX8MM devices. You only need the swu

archive (bitbake swupdate-img-qt) and you should be able to install it locally

or via integrated webserver.

eMMC / NAND Partition sizes

To change the default partition sizes, see /usr/share/production/prod-

env.sh and change the default values. Consider that the eMMC has a

maximum of 32GB.

Description Image Name (mx6ul) Image Name (mx8mm)

U-Boot flash.bin flash.bin

U-Boot

environment

u-boot-initial-env-kontron-

mx6ul

u-boot-initial-env-kontron-

mx8mm

bootfs image-ktn-bootfs-kontron-

mx6ul-ktn-dunfell.tar.gz

image-ktn-bootfs-kontron-

mx8mm-ktn-dunfell.tar.gz

rootfs image-ktn-kontron-

mx6ul.tar.gz

image-ktn-kontron-

mx8mm.tar.gz

userfs image-ktn-userfs-kontron-

mx6ul-ktn-dunfell.tar.gz

image-ktn-userfs-kontron-

mx8mm-ktn-dunfell.tar.gz

1.

2.

 ptool flash_bl_spl && ptool flash_bootvars

partition sizes on eMMC (MB)
rootfs_size=10000
bootfs_size=50
userfs (if size empty -> all remaining space taken else SIZE in

Flash the eMMC on i.MX8MM or the NAND flash on i.MX6UL devices

3.1 Kontron i.MX8MM: ptool flash_emmc_AB

3.2 Kontron i.MX6UL: ptool flash_ubi_AB

This command will take some time and the status will be prompted.

Afterwards you can check the eMMC device with lsblk

The NAND flash with ubinfo -a

MiB)
userfs_size=""

1.

root@kontron-mx8mm:~# lsblk | grep mmcblk0
mmcblk0 179:0 0 29.1G 0 disk
├─mmcblk0p1 179:1 0 50M 0 part /mnt
├─mmcblk0p2 179:2 0 9.8G 0 part
├─mmcblk0p3 179:3 0 9.8G 0 part
└─mmcblk0p4 179:4 0 9.6G 0 part /usr/local
mmcblk0boot0 179:32 0 4M 1 disk
mmcblk0boot1 179:64 0 4M 1 disk

Volume ID: 0 (on ubi0)
Type: dynamic
Alignment: 1
Size: 124 LEBs (31490048 bytes, 30.0 MiB)
State: OK
Name: boot
Character device major/minor: 245:1

Volume ID: 1 (on ubi0)
Type: dynamic
Alignment: 1
Size: 620 LEBs (157450240 bytes, 150.1 MiB)
State: OK
Name: root_A
Character device major/minor: 245:2

Volume ID: 2 (on ubi0)
Type: dynamic
Alignment: 1
Size: 620 LEBs (157450240 bytes, 150.1 MiB)
State: OK

Why Do we Need a Bootfs Image?

In our implementation the bootfs is mandatory. It contains the following files:

The U-Boot looks into the file sys_active which is the current active Rootfs

partition. After an update this file gets altered, so that partitions are switched.

Also we update the kernel in the last step and keep the old one (active/

inactive) as fallback if something bad happens. Switching back after failure is

done automatically from executed U-Boot scripts.

Why Do we Need a Userfs Image?

The userfs image is not mandatory but can be used to install applications and

files which should persist during a system update. If you install files during the

build into /usr/local those files will get extracted and copied into the userfs

image. You can see an example in this recipe.

Perform Seamless System Update using SWUpdate

The advantage of having an A/B setup is that you can perform a system update

without having to boot into separate rescue/recovery system. This will make

the update more comfortable in the end because the update can be

downloaded and executed in the background during normal operation.

A disadvantage is the bigger memory footprint of the device. If you are

interested in different concepts and in general how it works, please read the

SWUpdate documentation.

Name: root_B
Character device major/minor: 245:3

Volume ID: 3 (on ubi0)
Type: dynamic
Alignment: 1
Size: 636 LEBs (161513472 bytes, 154.0 MiB)
State: OK
Name: data

root@kontron-mx8mm:~# ls /mnt/
fitImage_active fitImage_inactive lost+found sys_active

https://git.kontron-electronics.de/sw/yocto/meta-ktn/-/blob/develop-dunfell/swupdate/recipes-core/swupdate-extra-files/swupdate-extra-files.bb
https://sbabic.github.io/swupdate/

Creating an SWUpdate Image

You need a special image type (*.swu archive) which can be read and executed

by the swupdate tool. This file can be created with bitbake :

bitbake swupdate-img(-qt)

This will create an archive containing our default image ìmage-ktn(-qt) and

includes further files like sw-description which swupdate can use and install.

Install Update with Integrated Webserver

The default image starts a webserver provided by swupdate . It will listen for

connections on http://$DEVICE_IP:8080 . The device will make a DHCP

request and fallback to 192.168.1.11 if no DHCP server is available. With the

webserver you can download and install a *.swu image onto the device.

Hint

This is just an example of a quite handy feature of swupdate . In the field you

probably want to download the update from an external webserver or from an

USB drive. Please look at the file /usr/lib/swupdate/conf.d/09-swupdate-

args how swupdate is invoked. Further parameters are described in the official

SWUpdate documentation.

https://sbabic.github.io/swupdate/

After installing you can reboot the device which will then start into the updated

partition.

Using the System

Please also have a look at the "Supported Hardware" section for hardware-

specific guides and examples.

Todo

Release Notes

5.0.0 (2022-04)

Supported Hardware

DK i.MX8MM: Demokit with i.MX8MM SoM (N801x-S)

Supported peripherals in Linux: Ethernet 1 & 2, USB Host, USB OTG, SD card,

Debug Console, eMMC, SPI NOR, RTC, RS232, CAN, LEDs, GPIOs, PWM-

Beeper, HDMI, LVDS, I2C-Touchscreen, RS485, GPU

Supported boot devices: SD card, SPI NOR, eMMC

Supported System Boot A/B partitios on eMMC

Not supported or untested: VPU, Temperature Monitoring, PCIe, Suspend/

Sleep

DK i.MX6UL/ULL: Demokit with i.MX6UL/ULL SoM (N6x1x-S)

Supported peripherals in Linux: Ethernet 1 & 2, USB Host, USB OTG, SD card,

Debug Console, NAND FLash, SPI NOR, RTC, RS232, CAN, LEDs, GPIOs, PWM-

Beeper, RGB, I2C-Touchscreen, RS485

Supported boot devices: SD card, SPI NOR

Supported System Boot A/B partitions on NAND-Flash

Not supported or untested: Suspend/Sleep

Changelog

Linux: Update to v5.10.103

U-Boot: Drop extlinux support

U-Boot: Support A/B System Update

U-Boot / Linux: Use redundant U-Boot Partition

General: Support System Update (A/B) using swupdate tool

•

•

•

•

•

•

•

•

•

•

•

•

•

4.0.0-beta (2020-11-02)

Supported Hardware

DK i.MX8MM: Demokit with i.MX8MM SoM (N801x-S)

Supported peripherals in Linux: Ethernet 1 & 2, USB Host, USB OTG, SD card,

Debug Console, eMMC, SPI NOR, RTC, RS232, CAN, LEDs, GPIOs, PWM-

Beeper, HDMI [1], LVDS, I2C-Touchscreen, RS485, GPU [2][3]

Supported boot devices: SD card, SPI NOR, eMMC

Not supported or untested: VPU, Temperature Monitoring, PCIe, Suspend/

Sleep

.

Changelog

Linux: Update to v5.4.72, update and add further backported patches

Linux/U-Boot: Simplify board support patches

U-Boot: Add support for SoM models with 2GB and 4GB RAM

U-Boot: Drop support for preliminary SoMs with 2GB RAM

Linux: Preliminary fixes for GPU boot issues (not verified completely) [3]

Yocto: Update to Yocto/OE 3.1.3 + latest patches from dunfell branch

A/B System Updates

Release 5.0.0 supports seamlessly system updates. This means that you can update your

device without booting into a separate partition or device. This requires a higher memory

footprint and you must keep it in mind if you are developing a custom rootfs. Other non A/B

setups are not supported at the moment.

Attention: Beta Release

This is a beta release version of the BSP. Not all parts are verified and tested.

•

•

•

•

•

•

•

•

•

Notes

Please also see the BSP's issue tracker.

[1] HDMI Support

The ADV7535 DSI to HDMI bridge on the i.MX8MM demo board is currently

limited to support only CEA861 modes up to 720p. Please consider this if you

plan to use the HDMI port.

[2] GPU/Graphics Support

We are currently using the open etnaviv drivers for the GPUs together with

downstream NXP drivers for the display subsystem on i.MX8MM. While this

works in general, there are known issues (e.g. flickering/jerking of rendered

moving objects) in Qt.

[3] Power-Domain Support

We are currently using preliminary backported patches for power domain

support in the Linux kernel. There are known problems, especially in relation

with the initialization of the GPUs while booting, that might still cause some

trouble.

3.0.0-alpha3 (2020-03-23)

Attention: Alpha Release

This is an alpha release version of the BSP. All parts are subject to change without notice.

https://git.kontron-electronics.de/yocto-ktn/build-ktn-imx/-/issues

Supported Hardware

DK i.MX8MM: Demokit with i.MX8MM SoM (Preliminary Development Revision

N8010-Rev0 and n8010)

Supported peripherals in Linux: Ethernet 1 & 2, USB Host, USB OTG, SD

Card, Debug Console, eMMC, SPI NOR, RTC, RS232, CAN, LEDs, GPIOs, PWM-

Beeper, HDMI [1], LVDS, I2C-Touchscreen, RS485, GPU [2]

Not supported or untested: VPU, eMMC Boot, SPI NOR Boot, Temperature

Monitoring

DK i.MX6UL/ULL: Demokit with i.MX6UL/ULL SoM

Supported peripherals in Linux: SD Card, Debug Console, CAN

Not supported or untested: Ethernet 1 & 2, USB Host, USB OTG, eMMC, SPI

NOR, SPI NAND, RTC, RS232, LEDs, GPIOs

Changelog

U-Boot/Linux i.MX8MM: Create separate devicetrees for the deprecated

Rev0 SoM with DA9063 PMIC and the new version. (Please note that the

deprecated SoM revision will be removed in the future and is only kept for

now until the new hardware is fully available.)

U-Boot: Add auto detection for the two i.MX8MM SoM variants and

connected LVDS panel, to select the best default option in the boot menu.

Linux: Enable i.MX8MM GPU support with etnaviv drivers.

Yocto: Update to Yocto/OE 3.0.2

Notes

[1] HDMI Support

The ADV7535 DSI to HDMI bridge on the i.MX8MM demo board is currently

limited to support only CEA861 modes up to 720p. Please consider this if you

plan to use the HDMI port.

•

•

•

•

•

•

•

•

[2] GPU/Graphics Support

We are currently using the open etnaviv drivers for the GPUs together with

downstream NXP drivers for the display subsystem on i.MX8MM. While this

works in general, there are known issues (e.g. flickering/jerking of rendered

moving objects).

3.0.0-alpha2 (2020-01-29)

Supported Hardware

DK i.MX8MM: Demokit with i.MX8MM SoM (Preliminary Development Revision)

Supported peripherals in Linux: Ethernet 1 & 2, USB Host, USB OTG, SD

Card, Debug Console, eMMC, SPI NOR, RTC, RS232, CAN, LEDs, GPIOs, PWM-

Beeper, HDMI [1], LVDS, I2C-Touchscreen

Not supported or untested: RS485, GPU, VPU

DK i.MX6UL/ULL: Demokit with i.MX6UL/ULL SoM

Supported peripherals in Linux: SD Card, Debug Console, CAN

Not supported or untested: Ethernet 1 & 2, USB Host, USB OTG, eMMC, SPI

NOR, SPI NAND, RTC, RS232, LEDs, GPIOs

Changelog

Linux: Add drivers for i.MX8MM graphics and display support (LCDIF, MIPI-

DSI, HDMI [1] and LVDS).

Linux: Add support for 2MB SPI-NOR chip MX25V8035F on latest revision

of i.MX8MM SoM.

Linux: Add drivers for PMIC PCA9450 on latest revision of i.MX8MM SoM.

Attention: Alpha Release

This is an alpha release version of the BSP. All parts are subject to change without notice.

•

•

•

•

•

•

•

Linux: Update to latest patch release v5.4.15.

U-Boot: Update to final v2020.01 and update KTN patches.

TF-A: Update to v2.2.

image-ktn-test: Add devregs, libdrm-tests and lmbench.

Notes

[1] HDMI Support

The ADV7535 DSI to HDMI bridge on the i.MX8MM demo board is currently

limited to support only CEA861 modes up to 720p. Please consider this if you

plan to use the HDMI port.

3.0.0-alpha (Initial Release, 2019-12-19)

Supported Hardware

DK i.MX8MM: Demokit with i.MX8MM SoM (Preliminary Development Revision)

Supported peripherals in Linux: Ethernet 1 & 2, USB Host, USB OTG, SD

Card, Debug Console, eMMC, SPI NOR, RTC, RS232, CAN, LEDs

Not supported or untested: HDMI, LVDS, RS485, PWM-Beeper, GPIOs

•

•

•

•

Attention: Alpha Release

This is an early alpha release version of the BSP. Large parts of the hardware support were

not tested so far. All parts are subject to change without notice.

Version Number

For earlier i.MX Yocto BSPs we already used releases named 1.x.x and 2.x.x. We will keep this

scheme by continuing with 3.0.0 and incrementing the first digit for major changes (switch

Yocto base release, etc.), the second digit for new features and the last digit for patches and

fixes.

•

•

DK i.MX6UL/ULL: Demokit with i.MX6UL/ULL SoM

Supported peripherals in Linux: SD Card, Debug Console, CAN

Not supported or untested: Ethernet 1 & 2, USB Host, USB OTG, eMMC, SPI

NOR, SPI NAND, RTC, RS232, LEDs, GPIOs

Changelog

Initial Alpha-Release for new i.MX BSP based on Yocto 3.0.1 (Zeus)

Add limited support for Demokits with i.MX8MM and i.MX6UL/ULL

•

•

•

•

Issue Tracker

Please have a look at the issue tracker on our GitLab server for known bugs and

issues affecting the BSP and also to report any issues you might encounter.

There's also a section in the main documentation about general known issues.

https://git.kontron-electronics.de/yocto-ktn/build-ktn-imx/issues
https://docs.kontron-electronics.de/yocto-ktn/yocto-ktn/known-issues.html

Hardware Overview

SoM Models

Open SoM User Guide PDF

Open SoM Spec Sheet PDF

Board Models

Open Board Spec Sheet PDF

Name SoM # Description

SL i.MX6UL (N6310) 40099 123 i.MX6UL SoM (256MB RAM/NAND)

SL i.MX6UL (N6311) 40099 122 i.MX6UL SoM (512MB RAM/NAND)

SL i.MX6ULL (N6410) 40099 144 i.MX6ULL SoM (256MB RAM/NAND)

SL i.MX6ULL (N6411) 40099 145 i.MX6ULL SoM (512MB RAM/NAND)

Name Kit # SoM # Description

DK i.MX6UL 50099 061 40099 122 Demo-Kit

DK 5" i.MX6UL 50099 058 40099 122 Demo-Kit with 5"-Display

DK i.MX6ULL 50099 046 40099 145 Demo-Kit

DK 5" i.MX6ULL 50099 052 40099 145 Demo-Kit with 5"-Display

files/SL_iMX6ULL_User_Guide_Rev_0.1.pdf
files/SL_iMX6ULL_User_Guide_Rev_0.1.pdf
https://www.kontron-electronics.de/fileadmin/media/downloads/factsheet/som/SL_i.MX6ULL_Factsheet_EN.pdf
https://www.kontron-electronics.de/fileadmin/media/downloads/factsheet/som/SL_i.MX6ULL_Factsheet_EN.pdf
https://www.kontron-electronics.de/fileadmin/media/downloads/factsheet/board/BL_i.MX6ULLUL_Factsheet_EN.pdf
https://www.kontron-electronics.de/fileadmin/media/downloads/factsheet/board/BL_i.MX6ULLUL_Factsheet_EN.pdf

Using the System

Boot Devices

The i.MX6UL/ULL SoM has the two boot pins on the SoC (BOOT_MODE0 and

BOOT_MODE1) unconnected by default, which means the boot mode is set to

"00". The BootROM will use the manufacture-mode to look for a bootable

image on the SD-card. If none is found, it will fall back to serial loader mode,

where it expects an image to be loaded via USB-OTG1 (which is on the micro

USB connector on the demo board).

To select other boot devices such as the SPI NOR flash or the eMMC, you need

to program the OTP fuses accordingly.

The default setup for production devices from Kontron is that the fuses are set

to boot from the SD card (SD1) as primary boot device. The SPI NOR is set as

fallback boot device if no SD card is available.

The following OTP register values will be used:

If you order SoMs from Kontron and you need a different setup, please supply

the necessary information with your order.

Fuse/Register

Name

Offset Value Description

BOOT_CFG 0x450 0x49002040 Boot from SD (SD1, 4bit buswidth,

3.3V), enable alternative boot from

NOR (SPI2, 3-byte addressing, CS0)

BT_FUSE_SEL 0x460[4] 1 Boot from fuses

Hardware Overview

SoM Models

Open SoM User Guide PDF

Open SoM Spec Sheet PDF

Demo Kits

Open Board Spec Sheet PDF

Name SoM # Description

SL i.MX8MM (N8010

Rev0)

i.MX8MM SoM (with DA9063 PMIC, Deprectated,

Do not use)

SL i.MX8MM (N8010) 40099

175

i.MX8MM SoM (Quad 1,6GHz, 1GB RAM, 8GB

eMMC)

SL i.MX8MM (N8011) 40099

185

i.MX8MM SoM (Quad 1,6GHz, 2GB RAM, 8GB

eMMC)

Name Kit # SoM # Description

DK i.MX8MM 50099 059 40099 175 Demo-Kit

DK 7" i.MX8MM 50099 063 40099 175 Demo-Kit with 7"-Display

https://www.kontron-electronics.de/fileadmin/media/downloads/handbuecher_dokumentationen/som/SL_i.MX8M_Mini_User_Guide_EN.pdf
https://www.kontron-electronics.de/fileadmin/media/downloads/handbuecher_dokumentationen/som/SL_i.MX8M_Mini_User_Guide_EN.pdf
https://www.kontron-electronics.de/fileadmin/media/downloads/factsheet/som/SL_i.MX8M_Mini_Factsheet_EN.pdf
https://www.kontron-electronics.de/fileadmin/media/downloads/factsheet/som/SL_i.MX8M_Mini_Factsheet_EN.pdf
https://www.kontron-electronics.de/fileadmin/media/downloads/factsheet/board/BL_i.MX8M_Mini_Factsheet_EN.pdf
https://www.kontron-electronics.de/fileadmin/media/downloads/factsheet/board/BL_i.MX8M_Mini_Factsheet_EN.pdf

Getting Started

Getting Started with i.MX8MM

This guide is intended for first time users of the i.MX8MM Demo Kits and

provides help in getting the board up and running. Each demo kit includes an

i.MX8MM board and accessories like a power supply and a USB-to-Serial

converter.

Connecting Power

Connect the power supply that came with the Demo Kit and plug it into the X1

socket on the board. Do not connect the power supply adapter to the mains yet.

The power socket on the board is next to the two USB ports and has only two

pins.

The following schematic shows the location of the power connector X1 on the

BL i.MX8MM board.

The following image shows the power connection done with an actual BL

i.MX8MM board.

Connecting the Debug Cable

Now take the USB cable from the box and plug the USB-Mini plug into the USB-

Mini port, named X3, at the side of the board next to the HDMI port. This

connector is not really a USB port, but rather a serial port which allows the

user access to UART 3 (Debug Console) and to communicate with the operating

system later on without the need for a network setup. The other end of the

cable (USB type A) has to be plugged into the USB-to-Serial adapter which

came with the Demo Kit. The other end of the USB-to-Serial adapter can now

be plugged into a computer.

The following image shows the location of the debug port (X3) on the BL

i.MX8MM board.

The following image shows the BL i.MX8MM board with the debug cable

attached as well as the power cable hooked up.

First Start

Before turning on the power for the BL i.MX8MM, make sure the USB-to-Serial

adapter is plugged into the computer and that you have a terminal or console

program running on the COM port the USB-to-Serial adapter is registered at. In

Linux this will usually be a ttyUSB and in Windows a COM port device.

Once this is set up, the board can be powered on and text should appear in the

terminal program, which means the operating system is starting. After a short

wait the text output should stop and a login prompt is visible. The image below

shows an example what should be shown in the terminal program. The login

prompt is right at the end of the screen.

To log in use the user root and no password is needed. Once logged in there

are many things that can be done with the system, but for a start why not try to

turn the digital output 1 (DIO1) on and off. The pre-installed system should

have the libgpiod library and its service programs already installed, this means

we can use a program called gpioset to change the state of DIO1.

For more information on this topic, see the "Main Documentation" here or see

section "Using the System" for i.MX8MM based boards.

Configure DIO1 as an output and setting it to 1 (On).

root@kontron-mx8mm:/# gpioset gpiochip0 3=1

https://docs.kontron-electronics.de/yocto-ktn/yocto-ktn/use-cases.html

The onboard LED for DIO1 should light up and signal that its output is now

active. With this one command the DIO1's corresponding GPIO was configured

as an output and then set to 1 in one go.

Turning DIO1 off can be done by simply setting it to 0 with the following

command:

The LED for DIO1 should now be off again, meaning the output is no longer

active.

This concludes the getting started guide for the BL i.MX8MM board. As

mentioned above, also see other sections of this online documentation to learn

more about other connection and communication options and how to setup

your own Yocto Linux build system to create your own OS.

Troubleshooting

The BL i.MX8MM board in the Demo Kit should have an OS pre-installed on the

internal eMMC memory and is ready to go. If this is not the case, you can still

get the board working by making an SD card with a pre-build image from our

server.

Download this "image" for example to get a base system. Unpack the file and

write the .wic file onto a blank SD card. If you are working under Windows, you

might have to rename the file extension from .wic to *.img to be able to use one

of the many SD card writing programs available. Insert the SD card into the BL

i.MX8MM boards SD card slot and plug in the power supply. The board should

now boot from the SD card automatically and the above mentioned text should

appear in the terminal program. You should now be able to log in and try the

GPIO example above.

Building your own system

If you want to build your own system for the BL i.MX8MM, you have to use the

Yocto based build system to create your own system image. Below you will find

root@kontron-mx8mm:/# gpioset gpiochip0 3=0

https://files.kontron-electronics.de/imx/latest/kontron-mx8mm/image-ktn-qt-kontron-mx8mm.wic.gz

a short guide on how to create such a system image, but only the very basic

steps are shown. For more information on the Yocto Project visit the projects

website where you also find the reference manual.

Installing Prerequisites

As you start from scratch, it is necessary to install some prerequisites on the

development PC. First update the package index:

Now install these packages:

Also see the official Yocto docs for additional packages, that might be needed.

Cloning the Core Repository (yocto-ktn)

To get started you need to clone the core repository to a local folder on the

development PC. This repository includes everything needed to make your own

system and system image. The drive where the repository is cloned to needs to

have at least 50 GB or more space available for extra files that will be

downloaded and created during the build process.

You should see something like this in your terminal:

sudo apt update

sudo apt install git-core gcc g++ python gawk chrpath texinfo
libsdl1.2-dev gdb-multiarch gcc-multilib g++-multilib

cd ~
git clone https://git.kontron-electronics.de/sw/yocto/yocto-ktn.git

https://www.yoctoproject.org
https://www.yoctoproject.org/docs/2.4/ref-manual/ref-manual.html#required-packages-for-the-host-development-system

Initializing the Build Environment

Before you can use the build system, it has to be initialized with the

parameters for the target machine. You have to change the directory to yocto-

ktn and then initialize it for the i.MX8MM machine.

Don't miss the dot (= source command) at the beginning of the second

command or the initialization won't work. Also note the -r option, which

instructs the initialization script to apply and load the latest release version,

which is not necessarily the newest development version. Omit this option if

you want to work with the newest development version of the BSP, but this is

not recommended.

During the initialization of the Yocto build system, all needed meta data is

downloaded from the community servers and the Kontron server

automatically. At the end of the output, the command will list three common

targets or system images you can create.

cd ~/yocto-ktn
. init-env -r latest -m kontron-mx8mm build-ktn-imx

Building the first System Image

To build your first system image you will use bitbake to build it, but be careful

as this can take a long time to complete.

Step 1: Accept the freescale/NXP EULA in the local.conf file

cd conf
nano local.conf

Remove the hash (#) in front of the line ACCEPT_FSL_EULA = "1" and save the

change by pressing CTRL+O then Enter and then press CTRL+X to leave the

editor. Go one folder up.

Step 2: Run bitbake to create the default image image-ktn

Now it is time to wait.

Checking the Build

Once the building process completes, you have to check if there were any error.

Usually bitbake prints out information about the build process during and at

cd ..

Demand of Resources

Please note, that building from scratch can take a long time (several hours!) and needs a lot

of disk space and RAM! To build as much as possible even when a recipe fails you can use the

-k option.

bitbake image-ktn -k

the end when all steps have been completed. If there is any mention of an error

or a failed package that could not be retrieved or compiled, try to run the build

process again with the same command as before and see if it completes now.

If there were no errors, you have successfully compiled your first system

image.

Booting the System Image

The newly compiled system image can be found in the folder "yocto-ktn/build-

ktn-imx/tmp/deploy/images/kontron-mx8mm/". The image file, usually

named image-ktn-kontron-mx8mm-ktn-YOCTORELEASE-VERSION-

DATE.rootfs.wic.gz, is a compressed Gzip file and needs to be unpacked before

it can be written to an SD card. Furthermore, the file type is called .wic which is

an SD card image. If you are working under Windows for example, you can

rename the file extension to .img which can make handling the file easier. The

screenshot below shows the location of the image file.

Once the SD card is inserted into the BL i.MX8MM, you can go to the top of this

guide and follow the steps there to see your own system booting off of the SD

card.

Modifying the System

After creating a system image for the BL i.MX8MM the next step is to make

changes to the BSP. The following steps will show how to create your own

layer and how to add it to the BSP so it gets included in the bitbake build

process. This new layer will add additional packages to the system image,

which will be needed for some examples in later sections.

Of course it is possible to modify the BSP directly and make changes to the files

which are already there, but if there is a problem it can be very difficult to get

help and if you want to start from scratch all changes are lost. This is why for

this guide we utilize Yocto's layering system. For more detailed information

about layers and how to create them visit the Yocto documentation.

https://docs.yoctoproject.org/current/dev-manual/common-tasks.html#understanding-and-creating-layers

Creating a new Layer

Using a separate layer you will add Python 3 and other Python 3 modules to

the system image, which are needed later for some examples to finish off this

guide, but could also be useful in your own projects.

Open a terminal window and go to the yocto-ktn folder. In this folder initialize

the build environment if this is not already the case from the previous section.

Then go back to your home folder.

Now create a new folder which will hold your layers and enter the folder.

Now use bitbake to create a new layer together with a basic layer folder

structure.

Note: The layer name meta-mypython3-layer is just an example, you can give

your layer a different name. However the following examples and commands

in this guide will use this layer name from here on. If you choose a different

name, remember to adapt the shown commands.

In your terminal you should see something similar as shown in the following

image:

cd ~/yocto-ktn
. init-env -r latest -m kontron-mx8mm build-ktn-imx

cd ~

mkdir mylayers
cd mylayers

bitbake-layers create-layer meta-mypython3-layer

Once the layer has been created, you will find a new folder in your mylayers

folder named meta-mypython3-layer which contains a basic layer structure

and the needed files to make it work. Feel free to explore the files and the

folders inside.

In the next step this new layer is added to the build system and becomes part

of your system image. Go back to the build folder and run bitbake again to add

your layer like this:

The result should look like this:

You can verify that your layer has been added to the system by issuing this

command:

You should now see all active layers. Your layer should be at the bottom of the

list, showing it's name and path.

cd ~
cd yocto-ktn/build-ktn-imx/
bitbake-layers add-layer ~/mylayers/meta-mypython3-layer/

bitbake-layers show-layers

To verify that the layer is recognized by the build system, you can build the

example recipe which was automatically created alongside the new layer. Run

the following command to build the example:

Right now nothing is really build as the example only includes instructions to

display text during the build process, but now it is clear the layer works and is

included in the build process correctly.

To get the build system to include Python 3 and other Python 3 modules in the

system image, some changes are needed to make this work. Use the following

commands to adapt your layer:

bitbake example

In the nano editor delete everything that is already there and replace it with

this:

Save the changes with CTRL+O and Enter and then leave the editor with

CTRL+X.

Explanation: In this Yocto system or BSP, the building of the system image and

which packages go into it, is defined in the core recipes named recipes-core/

cd ~/mylayers/meta-mypython3-layer/
mv recipes-example recipes-core
cd recipes-core/
mv example images
cd images/
mv example_0.1.bb image-ktn.bbappend
nano image-ktn.bbappend

IMAGE_EXTRA_INSTALL += " python3 \
 python3-pyserial \
 python3-can \
 python3-pip \
 python3-setuptools \
 python3-numpy \
 "

images. The bb file name used is image-ktn.bb and with all the above changes,

your layer now extends (appends) this base recipe to also include Python 3 in

the final system image.

If you want to include more or other Python 3 modules, visit the

OpenEmbedded Layer Index and go to the Recipes tab. If you enter "python3-"

into the search bar, all available Python 3 packages will be listed. However

note, that you can only include packages which are available for the Dunfell

and later releases of the Yocto Project. If a desired recipe requires a newer

Yocto version then this recipe cannot be included in the system image at this

point.

To check that the changes have been applied correctly, go back to the build

folder and run bitbake again like this:

The option -e instructs bitbake to only look at the global environment and

which variables are defined. In conjunction with grep only the information for

the variable IMAGE_EXTRA_INSTALL is shown. The = sign at the end helps to

narrow down the search. You should see something like this:

Now that everything is ready, you can go ahead and build a new system image.

Use bitbake as before:

The building of the new system image should go fairly fast, as most packages

were build in previous steps. You should mainly see Python 3 packages and

their dependencies being build. After the build process completes, retrieve the

system image file, unpack it and write it to an SD card.

bitbake image-ktn -e | grep IMAGE_EXTRA_INSTALL=

bitbake image-ktn

https://layers.openembedded.org/layerindex/branch/master/recipes/

Once the SD card is done and inserted into the BL i.MX8MM, you can go to the

top of this guide and follow the steps there to see this new system image

booting.

Examples using Python 3

Now that the system image includes Python 3 and some additional modules to

work with the BL i.MX8MMs hardware, why not try it out.

Serial Communication

In this example you will use the pySerial module to communicate with a

computer. First wire up the RS232 port of the BL i.MX8MM to a computer

directly if it has an RS232 port or via a USB-to-Serial adapter. You can find the

connector pin-outs of the BL i.MX8MM in the board overview. Remember to

switch the Rx and Tx lines when connecting the wires. Once done, turn on the

BL i.MX8MM and log in.

Try to run Python 3 and print something to the console:

Now it's time to create a small Python 3 serial test program. Open the nano

editor:

and enter the following program code or download a copy of the file

serial_test.py

root@kontron-mx8mm:~# python3
Python 3.8.2 (default, Feb 25 2020, 10:39:28)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more
information.
>>> print("Hello World!")
Hello World!
>>> quit()
root@kontron-mx8mm:~#

root@kontron-mx8mm:~# nano serial_test.py

./files/serial_test.py

#!/usr/bin/python3

import serial, time
Configure the serial driver
ser = serial.Serial()
Communicate via RS232
ser.port = "/dev/ttymxc0"
ser.baudrate = 115200
ser.bytesize = serial.EIGHTBITS
ser.parity = serial.PARITY_NONE
ser.stopbits = serial.STOPBITS_ONE

Try to open the port
try:
 ser.open()
except Exception as e:
 print ("Error while opening the serial port: " + str(e))
 exit()

If the port is open, write Hello World and wait
for a reply which must be terminated by an LF.
if ser.isOpen():
 try:
 # Clear the buffers
 ser.flushInput()
 ser.flushOutput()
 while True:
 # Write to the serial port
 ser.write("Hello World!\n".encode())
 # Write it immediately
 ser.flush()
 print("Write data!")
 try:
 # Now wait for the other side to send something
 myvar = ser.read_until() # Wait for LF
 except:
 # If there was an error during receiving, print an
error
 myvar = b'Error receiving!'

 # Display the received data, which must be ASCII
characters in this example
 print("Read data! " + myvar.decode('ascii'))
 time.sleep(0.05)
 ser.close()
 except Exception as e1:
 print ("Error while communicating...:" + str(e1))

Save the changes with CTRL+O and Enter and then leave the editor with

CTRL+X.

On the computer start a terminal program and open the serial port using these

parameters:

Baud rate: 115200

Data bits: 8

Stop bits: 1

Parity bit: None

Run the Python 3 program on the BL i.MX8MM with this command:

The terminal windows on the computer should now display the text:

Hello World!

While on the BL i.MX8MM the Python 3 program printed the text "Write data!"

to the console and now waits for the computer to send something. If you now

enter a text like "Hello World 2!" in the terminal program on the computer and

send it to the BL i.MX8MM, the Python 3 program will print the following to the

console:

Read data! Hello World 2!

Note: When sending data from the computer to the BL i.MX8MM the last byte

or character has to be a linefeed character, also referred to as LF, \n, ASCII

decimal value 10 or hex value A. Some terminal or serial programs on the

computer do this automatically, but there are exceptions which do not. If there

is no linefeed character in the data sent to the BL i.MX8MM, the Python 3

program will wait indefinitely until the linefeed character arrives, therefore

during this wait the program might appear frozen. There are other function in

else:
 print ("Cannot open serial port!")

•

•

•

•

python3 serial_test.py

pySerial to receive data which do not wait (block the program), the function

read_until was chosen in this example for practical reasons.

If you want to quit or terminate the program, press and hold the key

combination CTRL+C until the program has ended. Feel free to modify the

program or make your own and experiment with the serial port of the BL

i.MX8MM sending and receiving data.

CAN-Bus Communication

This example focuses on the Python 3 pyCan module to communicate with

another CAN-Bus node. The other device can be a BL i.MX8MM, one of our

Raspberry Pi based products or a PC with a CAN-Bus adapter. The commands

shown below are run on a device with Debian Linux and the can-utils

package installed. If your setup differs from this, you will have to adapt the

procedures below accordingly.

Both devices are wired together so that CAN High (CAN_H) from one device is

connected to CAN High on the other device, the same is done with CAN Low

(CAN_L) and Ground (GND). For the pin layout of the BL i.MX8MM have a look at

the board overview section.

After turning both devices on and letting them boot, you can try to perform a

simple CAN-Bus communication test, before moving on to the Python 3

example.

On the second device run the candump command on the connected CAN port, in

this example can0, to listen to traffic on the CAN-Bus. Configure the can0

interface with 125000 bps beforehand.

On the BL i.MX8MM configure the can0 interface also with 125000 bps and

then run the cansend command to send out a CAN message:

user@linux:~# candump can0

On the second device the console should show the received message:

If you get the same result, the communication works as expected, but you

could now swap the commands and send a message from the second device to

the BL i.MX8MM to test the reverse direction.

The next step is to build a Python 3 program which receives CAN messages and

sends them back like an echo. However the message ID will be changed to

make it easier to distinguish between the messages sent from the second

device and those the BL i.MX8MM echoed back.

The following Python 3 program uses the pyCan or can module to receive and

send messages via the BL i.MX8MM's CAN-Bus interface can0.

Download a copy of the file can_test.py.

This example program sends out one message at the start and then waits for

incoming messages which it will then echo back to the CAN-Bus, but changing

the message ID to 321h before doing so. To leave the program press CTRL+C

while still messages are arriving otherwise simply reboot the device or turn off

power. The function "bus.recv()" is a blocking call and waits until a new

message arrives.

On the second device run the candump program again, if it is not already

running, and configure the CAN interface with 125000 bps:

Configure the can0 interface of the BL i.MX8MM and then run the Python 3

program like this:

root@kontron-mx8mm: ifconfig can0 down
root@kontron-mx8mm: ip link set can0 type can bitrate 125000
root@kontron-mx8mm: ifconfig can0 up
root@kontron-mx8mm: cansend can0 123#DEADBEEF

user@linux:~# candump can0
 can0 123 [4] DE AD BE EF

user@linux:~# candump can0

./files/can_test.py

The second device should show in the console:

On the same device press CTRL+C to quit the candump program and instead

run the cangen program to generate random CAN messages on the CAN-Bus

continously. You can run the program like this:

The parameter -g 1000 means gap or pause for 1000 ms between messages.

The BL i.MX8MM starts to display a new message in the console every second

which should look like this:

root@kontron-mx8mm: ifconfig can0 down
root@kontron-mx8mm: ip link set can0 type can bitrate 125000
root@kontron-mx8mm: ifconfig can0 up
root@kontron-mx8mm: python3 can_test.py
First message sent on socketcan channel 'can0'

can0 234 [4] DE AD BE EF

user@linux:~# cangen can0 -g 1000

Message:
Timestamp: 1630326139.336095 ID: 04a6 S
DLC: 3 b5 4d 86 Channel: can0
Echo message sent on socketcan channel 'can0'
Message:
Timestamp: 1630326140.335648 ID: 00e4 S
DLC: 0 Channel: can0
Echo message sent on socketcan channel 'can0'
Message:
Timestamp: 1630326141.336454 ID: 0415 S
DLC: 8 dc fd 9c 71 77 d1 25 07 Channel: can0
Echo message sent on socketcan channel 'can0'
Message:
Timestamp: 1630326142.336584 ID: 047d S
DLC: 8 f7 23 4c 43 20 78 70 0f Channel: can0
Echo message sent on socketcan channel 'can0'
Message:
Timestamp: 1630326169.304173 ID: 0704 S
DLC: 8 09 18 4d 56 92 20 d2 2f Channel: can0
Echo message sent on socketcan channel 'can0'
...

If you are connected to the second device via SSH or you are working in a

terminal program on a desktop PC, you can open a second terminal window or

a second SSH connection and start the candump program again in parallel to

the cangen program. This way you can see the replies (echos) from the BL

i.MX8MM coming back to the second device.

Example output from candump running in parallel (separate terminal window)

to cangen on the second device:

First comes the CAN-Bus interface, then the message ID followed by the

message DLC and the raw data in hex values. Every message always appears

twice. The first message is sent by the second device and has a random

message ID, for the second message the ID is always 321h. This message was

echoed back from the BL i.MX8MM.

Writing the System Image to eMMC Memory

user@linux:~# candump can0
 can0 4E1 [8] 11 61 62 62 76 25 4B 1D
 can0 321 [8] 11 61 62 62 76 25 4B 1D
 can0 1D6 [8] 7B B2 06 67 B5 3E CE 18
 can0 321 [8] 7B B2 06 67 B5 3E CE 18
 can0 06A [1] 37
 can0 321 [1] 37
 can0 1BA [8] 1B 34 16 41 46 FD D6 67
 can0 321 [8] 1B 34 16 41 46 FD D6 67
 can0 599 [4] D8 2A 0B 61
 can0 321 [4] D8 2A 0B 61
 can0 64A [7] A1 03 FB 7B 46 DF A9
 can0 321 [7] A1 03 FB 7B 46 DF A9
 can0 386 [8] 13 1E A5 10 DF 43 F2 0D
 can0 321 [8] 13 1E A5 10 DF 43 F2 0D
 can0 357 [8] B2 0B D8 3A 38 F0 06 3F
 can0 321 [8] B2 0B D8 3A 38 F0 06 3F
...

Danger

Since Release 5.0.0 this is no longer valid please refer to chapter Flash layout.

The BL i.MX8MM has an eMMC memory chip on the SoM, which can be used to

boot a self made System Image and in the process freeing up the SD card slot

which can then be used as data storage for example.

Note: If you received the BL i.MX8MM with a Demo Kit, then you should be good

to go and you can go to the top of this guide and follow the steps there to get

the device up and running. If you received or bought the BL i.MX8MM

standalone, have a look at the next section.

Preparations

To write the System Image to the eMMC memory, a few things have to be

prepared.

Find and unpack your System Image as described here Booting the System

Image further up in this guide.

Place the extracted wic file on a FAT (FAT32) formatted USB stick. Consider

renaming the file to something shorter, like rootfs.wic. This filename will

used instead of the default name.

Boot the BL i.MX8MM from SD card and insert the USB stick which contains

the System Image (wic) file.

The eMMC memory can be accessed through the device /dev/mmcblk0.

Writing the System Image to eMMC Memory

Once the system is running and the USB stick is inserted into a USB port, there

should be some text in the console that a USB stick was detected and which

device it is.

•

•

•

•

root@kontron-mx8mm:~# [87.081061] usb 1-1.4: new high-speed USB
device number 4 using ci_hdrc
[87.385051] usb 1-1.4: device descriptor read/64, error -71
[87.607943] usb-storage 1-1.4:1.0: USB Mass Storage device
detected
[87.614512] scsi host0: usb-storage 1-1.4:1.0
[88.638468] scsi 0:0:0:0: Direct-Access Generic- Multiple
Reader 1.07 PQ: 0 ANSI: 4
[88.648633] scsi 0:0:0:1: Direct-Access Generic- MicroSD/

If the USB stick was already plugged-in during boot, you can use the command

dmesg to see the system messages or try the command lsblk to see if there

is a new block device available and if it is already mounted.

In this example the USB stick was detected during boot and the first partition

of the media was mounted to "/run/media/sdb1". Navigating in to this folder

and listing the available files should show you the System Image (wic) file. If

the mount point is different on your device, adjust the following commands

accordingly.

You can now write the System Image to the eMMC memory using the program

dd and the device name /dev/mmcblk0:

M2 1.08 PQ: 0 ANSI: 4
[89.050075] sd 0:0:0:1: [sdb] 31116288 512-byte logical blocks:
(15.9 GB/14.8 GiB)
[89.058307] sd 0:0:0:0: [sda] Attached SCSI removable disk
[89.061203] sd 0:0:0:1: [sdb] Write Protect is off
[89.071104] sd 0:0:0:1: [sdb] Write cache: disabled, read
cache: disabled, doesn't support DPO or FUA
[89.113221] sdb: sdb1
[89.122718] sd 0:0:0:1: [sdb] Attached SCSI removable disk

root@kontron-mx8mm:~# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sdb 8:16 1 14.9G 0 disk
`-sdb1 8:17 1 14.9G 0 part /run/media/sdb1
mtdblock0 31:0 0 2M 0 disk
mmcblk0 179:0 0 29.1G 0 disk
|-mmcblk0p1 179:1 0 83.2M 0 part /run/media/mmcblk0p1
`-mmcblk0p2 179:2 0 664.3M 0 part
mmcblk0boot0 179:32 0 4M 1 disk
mmcblk0boot1 179:64 0 4M 1 disk
mmcblk1 179:96 0 14.9G 0 disk
|-mmcblk1p1 179:97 0 83.2M 0 part /run/media/mmcblk1p1
`-mmcblk1p2 179:98 0 356M 0 part /

root@kontron-mx8mm:~# cd /run/media/sdb1
root@kontron-mx8mm:/run/media/sdb1# ls -la
drwxrwx--- 2 root disk 32768 Jan 1 1970 .
drwxr-xr-x 5 root root 100 Sep 1 09:08 ..
-rwxrwx--- 1 root disk 465599488 Aug 18 12:20 rootfs.wic

Now wait for a few minutes until the complete image has been transferred.

Once this is done, dd will print out the amount of blocks read and written and

you are back at the command prompt.

Unplug the USB stick and then reboot the BL i.MX8MM from SD card again,

there is one more change needed.

After the reboot check with lsblk that the FAT partition of the eMMC memory

is mounted at /run/media/mmcblk0p1.

Enter the folder /run/media/mmcblk0p1 and then go into the folder extlinux

and edit the file extlinux.conf:

Change all references of mmcblk1 to mmcblk0, there should be 2 places to edit.

root@kontron-mx8mm:~# dd if=rootfs.wic of=/dev/mmcblk0 bs=1M
conv=sync

root@kontron-mx8mm:~# reboot

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
mtdblock0 31:0 0 2M 0 disk
mmcblk0 179:0 0 29.1G 0 disk
|-mmcblk0p1 179:1 0 83.2M 0 part /run/media/mmcblk0p1
`-mmcblk0p2 179:2 0 664.3M 0 part
mmcblk0boot0 179:32 0 4M 1 disk
mmcblk0boot1 179:64 0 4M 1 disk
mmcblk1 179:96 0 14.9G 0 disk
|-mmcblk1p1 179:97 0 83.2M 0 part /run/media/mmcblk1p1
`-mmcblk1p2 179:98 0 356M 0 part /

root@kontron-mx8mm:~# cd /run/media/mmcblk0p1
root@kontron-mx8mm:~# cd extlinux
root@kontron-mx8mm:~# nano extlinux.conf

Note: Do not delete the "p2" part from the device name, only change the 1 to 0.

Press CTRL+O and Enter to save the changes and then CTRL+X to leave the

editor. Everything is now ready. Power off the BL i.MX8MM and then take out

the SD card and power the device back on. It should now boot from the onboard

eMMC memory. You can go to the top of this guide and follow the steps there to

see your system image booting from eMMC memory.

Troubleshooting:

If nothing happens and the BL i.MX8MM does not boot from eMMC, then

probably the SPI NOR flash is not programed with a bootloader or the

bootconfiguration fuses do not have the correct settings. Boot the BL i.MX8MM

again from SD card and follow the steps from the next section.

Writing the Bootloader to NOR Flash

This section is intended for users who have a single BL i.MX8MM and not the

Demo Kit and want to be able to boot the device from eMMC memory instead,

freeing up the SD card for other uses. To boot the BL i.MX8MM from eMMC a

bootloader stored in the NOR flash of the SoM is needed, like U-Boot. In

addition the bootconfig has to include booting from NOR flash, at least as

Info

Since Release 5.0.0 this is no longer necesarry please refer to chapter Flash layout.

fallback option. More information about the bootconfig can be found on the

page Using the System.

First check if any action is needed. The fwinfo command prints out the current

system status.

A bootloader is present in the NOR flash, no action is needed and the

bootconfig supports booting from NOR flash as well.

Note: If you ordered a custom SL i.MX8MM or BL i.MX8MM, the bootconfig

might be different, however you might still be able to boot from eMMC. Check

the page "Using the System" to see which setting you have.

If the last 2 lines are missing, then no bootloader is present and needs to be

written to the NOR flash for the device to be able to boot from eMMC memory.

root@kontron-mx8mm:~# fwinfo
Fuses: SOM SerialNo: xxxxxxxx
Fuses: Board SerialNo: xxxxxxx
Fuses: Bootconfig: 0x18001410
Fuses: MAC1: xxxxxxxxxxxx
Fuses: MAC2: xxxxxxxxxxxx
Fuses: Lock: xxxxxxxxxxxx
Version: Firmware Version: xxxxxxxxxxxxxxxxx
Log: Devicetree info: xxxxxxxxxxxxxxx
Linux version xxxxxxxxxxxxxxx
U-Boot SPL xxxxxxxxxxxxx
U-Boot xxxxxxxxxxx

root@kontron-mx8mm:~# fwinfo
Fuses: SOM SerialNo: xxxxxxxx
Fuses: Board SerialNo: xxxxxxx
Fuses: Bootconfig: 0x18001410
Fuses: MAC1: xxxxxxxxxxxx
Fuses: MAC2: xxxxxxxxxxxx
Fuses: Lock: xxxxxxxxxxxx
Version: Firmware Version: xxxxxxxxxxxxxxxxx
Log: Devicetree info: xxxxxxxxxxxxxxx
Linux version xxxxxxxxxxxxxxx

Locating needed files

For the U-Boot bootloader to work, 2 files are needed. These files are named

flash.bin and uboot.bin. The files are located in the BSP output folder where

you also find the system image (wic) file.

The flash.bin file is most likely a symbolic link, follow it or look at the file

properties and note the name of the original file or copy it to a save location.

The same goes for the uboot.bin, but here the file is named u-boot-kontron-

mx8mm.bin, which also is most likely a symbolic link which you have to follow

to find the original file. Note it down or copy it also to a save location.

Following are some images from a Ubuntu Linux system showing the files as

an example. On your system the files can be named differently, so it is best to

double check the files names before coping them.

The flash.bin file symbolic link

File properties window of the flash.bin file revealing the actual file

The u-boot-kontron-mx8mm.bin symbolic link

File properties window of the u-boot-kontron-mx8mm.bin file revealing the

actual file

Preparations

Now that you have the files, a few more steps are need before you can write

the files to the NOR flash of the BL i.MX8MM.

Insert the SD card you have been using so far to boot the BL i.Mx8MM into

a computer using a card reader. You can also create a new SD card, for this

have a look at the previous topics further up in this guide first and do not

continue with the preparations until you have a booting SD card for the BL

i.MX8MM.

Copy both files on to the first partition of the SD card. Don't place the files

in a folder or subfolder, leave them in the root folder.

Rename each file accordingly, in this example the file flash.bin-kontron-

mx8mm-2020.01-r0-kontron-mx8mm-2020.01-r0 is renamed to flash.bin.

and the U-Boot file, in this case u-boot-kontron-mx8mm-2020.01-r0.bin is

renamed to uboot.bin.

•

•

•

•

You can also create an empty text file called mmc1_sd_card.txt for

example, so you can identify the SD card later on in the U-Boot bootloader,

because the onboard eMMC memory also identifies as an SD card.

The files on the SD card should look something like in the following image:

Writing the Bootloader

Everything has been prepared, now you can write the U-Boot files to the NOR

flash of the BL i.MX8MM.

Insert the SD card into the BL i.MX8MM but have the serial console ready

to press the space bar when the 3 second timeout appears. You have to

press the space bar within this timeframe to enter the bootloader stored

on the SD card.

The message in the console will say: Hit any key to stop autoboot

Once you are in the bootloader, issue the command fatls mmc 1:1 to list the

files of the SD card's first partition. You should see a listing like the one in

the image.

•

•

•

•

Now follow the steps from the page Using the System in the section SPI

NOR Boot

Remark: If it comes to writing to the NOR flash, you will see this term $

{filesize} in the commands, this is correct. Do not enter any numbers or

anything in its place, use the commands as they are.

Once done with the steps enter the command: boot

The system still boots from SD card, but now enter the command fwinfo

again and see if it says "U-Boot xxxx" at the bottom of the text.

If so, power off the device, take out the SD card and power the BL i.MX8MM

back on and look at the serial console if the bootloader now gets loaded

from the NOR flash and then boots your system image from the eMMC. If

you have no system installed in the eMMC memory, take a look at the

section Writing the System Image to eMMC Memory.

•

•

•

•

•

BL i.MX8MM (N801x S)

Board Layout and Connectors

IOs

Four digital inputs/outputs (either or) are available.

The table below shows number and function of available DIOs and their

associated GPIOs.

The input/output voltage is coupled to the power supply voltage (normally 24

volts).

DIO

Name

Direction GPIO Name GPIO

Device

GPIO

Offset

Connector

DIO1 output GPIO1_IO03 gpiochip0 3 X13 - Pin 1

DIO1 input GPIO1_IO06 gpiochip0 6 X13 - Pin 1

DIO2 output GPIO1_IO07 gpiochip0 7 X13 - Pin 3

DIO2 input GPIO1_IO08 gpiochip0 8 X13 - Pin 3

DIO3 output GPIO1_IO09 gpiochip0 9 X13 - Pin 5

DIO3 input GPIO1_IO10 gpiochip0 10 X13 - Pin 5

DIO4 output GPIO1_IO011 gpiochip0 11 X13 - Pin 7

DIO4 input GPIO5_IO02 gpiochip4 2 X13 - Pin 7

For an example on how to use or work with the DIOs see section "Using the

System" for more information.

Serial Devices

Below you will find an overview which serial device has which name in the OS

and belongs to which UART device of the iMX8 CPU.

For an example on how to use the serial devices see section "Using the System"

for more information.

CAN-Bus Interface

The BL i.MX8MM (N801x S) has one CAN-Bus interface. The device is present

after boot, but is not enabled by default.

For an example on how to use the CAN-Bus see section "Using the System" for

more information.

UART Type Accessible via Connector

UART 1 RS232 /dev/ttymxc0 X11

UART 2 RS485 /dev/ttymxc1 X12

UART 3 UART/TTL (Debug UART) /dev/ttymxc2 X3 (USB Mini-B)

Name Accessible via Connector

CAN can0 X12

Using the System

Boot Devices

The i.MX8MM SoM has the two boot pins on the SoC (BOOT_MODE0 and

BOOT_MODE1) unconnected by default, which means the boot mode is set to

"00". The BootROM will use the manufacture-mode to look for a bootable

image on the SD-card. If none is found, it will fall back to serial loader mode,

where it expects an image to be loaded via USB-OTG1 (which is on the micro

USB connector on the demo board).

To select other boot devices such as the SPI NOR flash or the eMMC, you need

to program the OTP fuses accordingly.

The default setup for production devices from Kontron is that the fuses are set

to boot from the SD card (SD2) as primary boot device. The SPI NOR is set as

fallback boot device if no SD card is available.

If you order SoMs from Kontron and you need a different setup, please supply

the necessary information with your order.

The following table shows the default configuration from Kontron in the first

row and below other possibilities for boot device configurations as example.

SPI NOR Boot

The U-Boot configuration for the Kontron i.MX8MM SoM creates two image:

flash.bin for the SPL and u-boot.itb for TF-A and U-Boot proper (see also

"Boot Chain Overview").

Here is an example of how to write the two images to the SPI NOR from within

the bootloader (running from SD-card). The two image files are expected to be

stored on a FAT partition of the SD-card.

Fuse/Register Name Offset Value Description

BOOT_CFG

BOOT_CFG_PARAMETER

0x470

0x480

0x18001410

0x03000010

Boot from SD (SD2, 4bit

buswidth, 3.3V), set

BT_FUSE_SEL,

Use SPI NOR as fallback (eCSPI1,

CS0)

BOOT_CFG

BOOT_CFG_PARAMETER

0x470

0x480

0x18000060

0x00000000

Boot from SPI NOR (eCSPI1,

CS0), set BT_FUSE_SEL, No

fallback

BOOT_CFG

BOOT_CFG_PARAMETER

0x470

0x480

0x18002020

0x03000010

Boot from eMMC (SD1, 8bit

buswidth, 3.3V), set

BT_FUSE_SEL, Use SPI NOR as

fallback (eCSPI1, CS0)

BOOT_CFG

BOOT_CFG_PARAMETER

0x470

0x480

0x18002020

0x00000000

Boot from eMMC (SD1, 8bit

buswidth, 3.3V), set

BT_FUSE_SEL, No fallback

Info

It is recommended to flash the Bootloader with ptool or swupdate because you don't have to

take care of memory offsets. This is explained in the chapter Flash-Layout

Probing the SPI NOR

Erasing the whole flash

Loading the SPL image

Writing the SPL image (offset: 1 KiB)

Loading the U-Boot image

Writing the U-Boot image (offset: 320 KiB)

Qt Applications and Backends

To make use of the GPU for your QtQuick applications, we recommend to use

the eglfs_kms backend.

=> sf probe
SF: Detected mx25r1635f with page size 256 Bytes, erase size 4 KiB,
total 2 MiB

=> sf erase 0 0x200000
SF: 2097152 bytes @ 0x0 Erased: OK

=> fatload mmc 1:1 0x40000000 flash.bin
242688 bytes read in 23 ms (10.1 MiB/s)

=> sf write 0x40000000 0x400 ${filesize}
device 0 offset 0x400, size 0x3b400
SF: 242688 bytes @ 0x400 Written: OK

=> fatload mmc 1:1 0x40000000 u-boot.bin
679544 bytes read in 43 ms (15.1 MiB/s)

=> sf write 0x40000000 0x50000 ${filesize}
device 0 offset 0x50000, size 0xa5e78
SF: 679544 bytes @ 0x50000 Written: OK

https://doc.qt.io/qt-5/embedded-linux.html#eglfs-with-the-eglfs-kms-backend
https://doc.qt.io/qt-5/embedded-linux.html#eglfs-with-the-eglfs-kms-backend

Using the DIOs

The 4 DIOs of the BL i.MX8MM (N801x S) are shown below. They can be

accessed in the operating system using commands from the libgpiod library.

The GPIOs in the operating system are grouped by so called gpiochip devices.

Note: The counting in the OS starts at 0 whereas the GPIO names/numbers

(column "Accessible via") start at 1. This does not apply to latter, the "IOxx" part.

The number behind "IO" denotes the GPIO offset number within each gpiochip

device when using libgpiod. See below for examples.

DIO - GPIO overview:

Examples

DIO as Outputs

With the gpioset command from the libgpiod library package, a GPIO can be

configured as an output and its state can be set at the same time. The

DIO

Name

Direction GPIO Name GPIO

Device

GPIO

Offset

Connector

DIO1 output GPIO1_IO03 gpiochip0 3 X13 - Pin 1

DIO1 input GPIO1_IO06 gpiochip0 6 X13 - Pin 1

DIO2 output GPIO1_IO07 gpiochip0 7 X13 - Pin 3

DIO2 input GPIO1_IO08 gpiochip0 8 X13 - Pin 3

DIO3 output GPIO1_IO09 gpiochip0 9 X13 - Pin 5

DIO3 input GPIO1_IO10 gpiochip0 10 X13 - Pin 5

DIO4 output GPIO1_IO011 gpiochip0 11 X13 - Pin 7

DIO4 input GPIO5_IO02 gpiochip4 2 X13 - Pin 7

command needs the gpiochip number or name and then the GPIO offset

number that should be changed.

Configure DIO1 (GPIO1_IO03) as an output and setting it to 1 (High, On).

Setting DIO1 (GPIO1_IO03) to 0 (Low, Off).

Configure DIO4 (GPIO1_IO011) as an output and setting it to 1 (High, On).

Setting DIO4 (GPIO1_IO011) to 0 (Low, Off).

DIO as Inputs

To read the current value of an DIO and configuring it as an input at the same

time, the gpioget command from the libgpiod library package can be used.

Configure DIO1 (GPIO1_IO06) as an input and read the current value.

Configure DIO2 (GPIO1_IO08) as an input and read the current value.

Configure DIO3 (GPIO1_IO10) as an input and read the current value.

Configure DIO4 (GPIO5_IO02) as an input and read the current value.

root@kontron-mx8mm:/# gpioset gpiochip0 3=1

root@kontron-mx8mm:/# gpioset gpiochip0 3=0

root@kontron-mx8mm:/# gpioset gpiochip0 11=1

root@kontron-mx8mm:/# gpioset gpiochip0 11=0

root@kontron-mx8mm:/# gpioget gpiochip0 6

root@kontron-mx8mm:/# gpioget gpiochip0 8

root@kontron-mx8mm:/# gpioget gpiochip0 10

If you want to see the change of an input, the command watch can help. In the

following example we are watching DIO4 using the gpioget command to read

the current value of the input. With "-n 1" we can set the update interval to 1

second.

To see all available gpiochip devices and known GPIO offsets (lines) the

command gpioinfo prints out all available devices.

If you just want to see the GPIO info of a particular gpiochip device, adding the

name of the device behind the getinfo command prints out only the

information for the given device.

root@kontron-mx8mm:/# gpioget gpiochip4 2

root@kontron-mx8mm:/# watch -n 1 gpioget 4 2

root@kontron-mx8mm:/# gpioinfo
gpiochip0 - 32 lines:
 line 0: unnamed unused input active-high
 line 1: unnamed unused input active-high
....

gpiochip1 - 32 lines:
 line 0: unnamed unused input active-high
 line 1: unnamed unused input active-high
 line 2: unnamed unused input active-high
....

gpiochip2 - 32 lines:
 line 0: unnamed unused input active-high
 line 1: unnamed unused input active-high
....

gpiochip3 - 32 lines:
 line 0: unnamed unused input active-high
 line 1: unnamed unused input active-high
....

gpiochip4 - 32 lines:
 line 0: unnamed unused input active-high
 line 1: unnamed unused input active-high
...

For example to display only the information for gpiochip0 device:

Using Serial Devices

The serial devices on the i.MX8 usually have a name like ttymxc and the

number at the end corresponds to a UART device. Below is a table with the

different UARTs of the i.MX8, what type they are and how each serial device can

be accessed, meaning which tty device corresponds to which UART.

To be able to use UART1 and and UART2, they have to be configured before their

first use. They have to be switched from terminal emulator (canonical mode) to

"raw". Only this way the user can access the devices and send and receive data.

Note: UART3 does not need to be configured, this is done automatically at the

start through the bootloader. Do not try to reconfigure this interface, otherwise

it might not be possible to establish any debug connection with the board / OS.

Configure UART1 (RS232)

After logging in via the Debug Console the following command needs to be

executed in order to get the RS232 (ttymxc0) ready for use.

root@kontron-mx8mm:/# gpioinfo gpiochip0
gpiochip0 - 32 lines:
 line 0: unnamed unused input active-high
 line 1: unnamed unused input active-high
 line 2: unnamed unused input active-high
 line 3: unnamed unused input active-high
...

UART Type Accessible via Connector

UART 1 RS232 /dev/ttymxc0 X11

UART 2 RS485 /dev/ttymxc1 X12

UART 3 UART/TTL (Debug UART) /dev/ttymxc2 X3 (USB Mini-B)

This command switches UART1 but also sets a baud rate of 9600 at the same

time.

Configure UART2 (RS485)

After logging in via the Debug Console the following command needs to be

executed in order to get the RS485 (ttymxc1) ready for use. Remember when

using this interface, that communication can only be half duplex. Only one

device is allowed to communicate at any given time, otherwise data will be

lost.

This command switches UART1 but also sets a baud rate of 9600 at the same

time.

Examples

Following are some examples on how to use the serial ports on the BL

i.MX8MM (N801x S) and how to configure them.

RS232 communication

This example assumes that the RS232 interface of the BL i.MX8MM (N801x S) is

wired to another devices RS232 interface, remember to swap the Rx and Tx

lines and also connect up GND, otherwise the received data can look very

strange.

After connecting the RS232 to the other device, it can be configured and is

ready to send and received data.

root@kontron-mx8mm:/# stty -F /dev/ttymxc0 raw -echo -echoe -echok
9600

root@kontron-mx8mm:/# stty -F /dev/ttymxc1 raw -echo -echoe -echok
9600

root@kontron-mx8mm:/# stty -F /dev/ttymxc0 raw -echo -echoe -echok
19200
root@kontron-mx8mm:/# cat /dev/ttymxc0

Sending out data from the console, the echo command can be used and the

output is forwarded to the serial device.

The PC now also displays the the received text "Hello World!".

RS485 communication

This example assumes that the RS485 interface of the BL i.MX8MM (N801x S)

is wired to a PC USB-to-RS485 adapter and that the lines A, B and GND are

connected appropriately. Of course any other device with an RS485 interface is

just as good.

After wiring the RS485, it can be configured and is ready to receive data.

Sending out data from the console, the echo command can be used and the

output is forwarded to the serial device.

The PC should now display the received text "Hello World!".

Hello World!
Hello World!
Hello World!
Hello World!

root@kontron-mx8mm:/# echo "Hello World!" > /dev/ttymxc0

root@kontron-mx8mm:/# stty -F /dev/ttymxc1 raw -echo -echoe -echok
9600
root@kontron-mx8mm:/# cat /dev/ttymxc1
Hello World!
Hello World!
Hello World!
Hello World!

root@kontron-mx8mm:/# echo "Hello World!" > /dev/ttymxc1

Using CAN-Bus

The CAN-Bus interface is present in the OS after boot, but it is not activated by

default. Following is a table with the name of the CAN interface and for an

example on how to configure and use it, see below.

Checking CAN availability

To be sure that the CAN device or interface is really present in the system, the

command ifconfig with the -a parameter can be used to list all socket

based communication devices. The can0 interface should be right at the top.

Configure and activate the CAN interface

In order for the CAN interface to work, it has to be configured first and then

activated to become available for use.

Name Accessible via Connector

CAN can0 X12

root@kontron-mx8mm:~# ifconfig -a
can0 Link encap:UNSPEC HWaddr
00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
 NOARP MTU:16 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:10
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

eth0 Link encap:Ethernet HWaddr 82:73:E0:1D:85:45
....

eth1 Link encap:Ethernet HWaddr 42:04:8D:DC:2E:DF
....

lo Link encap:Local Loopback
....

Use the following commands to ready the interface:

The first command disables the interface, the second command configures the

can0 interface as can with a bitrate of 125 kbits. The third command enables

or re-enables the CAN interface with the new settings and the device is now

ready for use.

Examples

To make sure the CAN interface is really available, entering the ifconfig

command on its own will show all currently active network or socket based

devices. In the following examples the programs candump and cansend are

used to send and receive CAN messages.

Receiving data

To receive data from the CAN-Bus and print it to the console, we can use the

candump command.

The CAN-Bus master sent out 4 messages each containing 4 bytes of data. The

id or CAN identifier of each message is 0x134 (hexadecimal) in this example.

Sending data

To send data via the CAN-Bus, we can use the cansend command.

root@kontron-mx8mm:~# ifconfig can0 down
root@kontron-mx8mm:~# ip link set can0 type can bitrate 125000
root@kontron-mx8mm:~# ifconfig can0 up

root@kontron-mx8mm:/# candump can0
interface = can0, family = 29, type = 3, proto = 1
<0x134> [4] de ad be ef
<0x134> [4] de ad be ef
<0x134> [4] de ad be ef
<0x134> [4] de ad be ef

The parameters -v means verbose output and with -i we can set our own

message id. The default message id cansend uses is "1" if the "-i" parameter is

not specified. The data or byte(s) which we want to send, have to be supplied

individually in the format 0xNM, where NM has to be a hexadecimal number in

the range of 0x00 to 0xFF which equals the decimal range of 0 to 255. In this

example we send 4 bytes containing the data "deadbeef".

root@kontron-mx8mm:/# cansend can0 -v -i 0x123 0xDE 0xAD 0xBE 0xEF
interface = can0, family = 29, type = 3, proto = 1
id: 291 dlc: 4
0xde 0xad 0xbe 0xef

Using the Cortex M4 Core

Using the Cortex M4 Core on Kontron i.MX8MM
Boards

The following guide uses U-Boot or Linux to load a binary compiled with the

NXP MCUXpresso SDK into the M4 core of the i.MX8MM and start it. The

application on the M4 is able to communicate with the Linux system through a

custom rpmsg client driver kernel module.

1. Compiling an Application for the M4 Core

Please follow the guide in this blog post from i.MX guru Detlev Zundel to setup

the SDK and compile a demo application.

The demo applications for the NXP i.MX8MM Evaluation Kit (EVK) can also be

used on the Kontron boards. You might want to adjust the the peripherals and

pinmux settings to match your hardware.

In the following we will use two different example apps:

Example 1: The "hello_world" example for creating a simple UART console.

We will load this app via U-Boot.

Example 2: The "rpmsg_lite_pingpong_rtos" example to demonstrate the

intercore communication. We will load this app via Linux.

In order to receive log messages from the M4 core, we need access to an

additional UART (not the one used by Linux). In our example we will use the

RS232 interface (UART1) on the Kontron board as the M4 debug console.

To switch from UART4 used on the NXP i.MX8MM EVK to UART1, the following

changes in the source code are required.

1.

2.

Demo Source Code Changes for using UART1 as M4 console

https://blog.lazy-evaluation.net/posts/embedded/imx8mm-evk-m4-intro.html

--- a/evkmimx8mm/demo_apps/hello_world/pin_mux.c
+++ b/evkmimx8mm/demo_apps/hello_world/pin_mux.c
@@ -55,14 +55,14 @@ BOARD_InitPins:
 *
 * END

 void BOARD_InitPins(void) { /*!< Function
assigned for the core: Cortex-M4[m4] */
- IOMUXC_SetPinMux(IOMUXC_UART4_RXD_UART4_RX, 0U);
- IOMUXC_SetPinConfig(IOMUXC_UART4_RXD_UART4_RX,
+ IOMUXC_SetPinMux(IOMUXC_SAI2_RXC_UART1_RX, 0U);
+ IOMUXC_SetPinConfig(IOMUXC_SAI2_RXC_UART1_RX,
 IOMUXC_SW_PAD_CTL_PAD_DSE(6U) |
 IOMUXC_SW_PAD_CTL_PAD_FSEL(2U));
- IOMUXC_SetPinMux(IOMUXC_UART4_TXD_UART4_TX, 0U);
- IOMUXC_SetPinConfig(IOMUXC_UART4_TXD_UART4_TX,
+ IOMUXC_SetPinMux(IOMUXC_SAI2_RXFS_UART1_TX, 0U);
+ IOMUXC_SetPinConfig(IOMUXC_SAI2_RXFS_UART1_TX,
 IOMUXC_SW_PAD_CTL_PAD_DSE(6U) |
 IOMUXC_SW_PAD_CTL_PAD_FSEL(2U));

--- a/evkmimx8mm/multicore_examples/rpmsg_lite_pingpong_rtos/linux_remote/
pin_mux.c
+++ b/evkmimx8mm/multicore_examples/rpmsg_lite_pingpong_rtos/linux_remote/
pin_mux.c
@@ -55,14 +55,14 @@ BOARD_InitPins:
 *
 * END

 void BOARD_InitPins(void) { /*!< Function
assigned for the core: Cortex-M4[m4] */
- IOMUXC_SetPinMux(IOMUXC_UART4_RXD_UART4_RX, 0U);
- IOMUXC_SetPinConfig(IOMUXC_UART4_RXD_UART4_RX,
+ IOMUXC_SetPinMux(IOMUXC_SAI2_RXC_UART1_RX, 0U);
+ IOMUXC_SetPinConfig(IOMUXC_SAI2_RXC_UART1_RX,
 IOMUXC_SW_PAD_CTL_PAD_DSE(6U) |
 IOMUXC_SW_PAD_CTL_PAD_FSEL(2U));
- IOMUXC_SetPinMux(IOMUXC_UART4_TXD_UART4_TX, 0U);
- IOMUXC_SetPinConfig(IOMUXC_UART4_TXD_UART4_TX,
+ IOMUXC_SetPinMux(IOMUXC_SAI2_RXFS_UART1_TX, 0U);
+ IOMUXC_SetPinConfig(IOMUXC_SAI2_RXFS_UART1_TX,
 IOMUXC_SW_PAD_CTL_PAD_DSE(6U) |
 IOMUXC_SW_PAD_CTL_PAD_FSEL(2U));
 }

--- a/boards/evkmimx8mm/board.c
+++ b/boards/evkmimx8mm/board.c
@@ -24,7 +24,7 @@
 void BOARD_InitDebugConsole(void)
 {
 uint32_t uartClkSrcFreq = BOARD_DEBUG_UART_CLK_FREQ;
- CLOCK_EnableClock(kCLOCK_Uart4);
+ CLOCK_EnableClock(kCLOCK_Uart1);
 DbgConsole_Init(BOARD_DEBUG_UART_INSTANCE, BOARD_DEBUG_UART_BAUDRATE,
BOARD_DEBUG_UART_TYPE, uartClkSrcFreq);
 }
 /* Initialize MPU, configure non-cacheable memory */

--- a/boards/evkmimx8mm/board.h
+++ b/boards/evkmimx8mm/board.h

2. Modify the TF-A code to assign peripherals to the correct RDC
domain

The Ressource Domain Controller (RDC) is used to assign peripherals to either

the A53 domain or the M4 domain. Using a peripheral from a domain that it is

not assigned to usually leads to failures like system lockups.

@@ -19,13 +19,13 @@
 /* The UART to use for debug messages. */
 #define BOARD_DEBUG_UART_TYPE kSerialPort_Uart
 #define BOARD_DEBUG_UART_BAUDRATE 115200u
-#define BOARD_DEBUG_UART_BASEADDR UART4_BASE
-#define BOARD_DEBUG_UART_INSTANCE 4U
+#define BOARD_DEBUG_UART_BASEADDR UART1_BASE
+#define BOARD_DEBUG_UART_INSTANCE 1U
 #define
BOARD_DEBUG_UART_CLK_FREQ
\
- CLOCK_GetPllFreq(kCLOCK_SystemPll1Ctrl) /
(CLOCK_GetRootPreDivider(kCLOCK_RootUart4)) / \
- (CLOCK_GetRootPostDivider(kCLOCK_RootUart4)) / 10
-#define BOARD_UART_IRQ UART4_IRQn
-#define BOARD_UART_IRQ_HANDLER UART4_IRQHandler
+ CLOCK_GetPllFreq(kCLOCK_SystemPll1Ctrl) /
(CLOCK_GetRootPreDivider(kCLOCK_RootUart1)) / \
+ (CLOCK_GetRootPostDivider(kCLOCK_RootUart1)) / 10
+#define BOARD_UART_IRQ UART1_IRQn
+#define BOARD_UART_IRQ_HANDLER UART1_IRQHandler

 #define GPV5_BASE_ADDR (0x32500000)
 #define FORCE_INCR_OFFSET (0x4044)

--- a/boards/evkmimx8mm/clock_config.c
+++ b/boards/evkmimx8mm/clock_config.c
@@ -99,8 +99,8 @@ void BOARD_BootClockRUN(void)
 // CLOCK_SetRootDivider(kCLOCK_RootAxi, 1U, 2);
 // CLOCK_SetRootMux(kCLOCK_RootAxi, kCLOCK_AxiRootmuxSysPll1); /*
switch AXI to SYSTEM PLL1 800MHZ */

- CLOCK_SetRootMux(kCLOCK_RootUart4, kCLOCK_UartRootmuxSysPll1Div10); /*
Set UART source to SysPLL1 Div10 80MHZ */
- CLOCK_SetRootDivider(kCLOCK_RootUart4, 1U, 1U); /*
Set root clock to 80MHZ/ 1= 80MHZ */
+ CLOCK_SetRootMux(kCLOCK_RootUart1, kCLOCK_UartRootmuxSysPll1Div10); /*
Set UART source to SysPLL1 Div10 80MHZ */
+ CLOCK_SetRootDivider(kCLOCK_RootUart1, 1U, 1U); /*
Set root clock to 80MHZ/ 1= 80MHZ */

 CLOCK_EnableClock(kCLOCK_Rdc); /* Enable RDC clock */
 /* The purpose to enable the following modules clock is to make sure the
M4 core could work normally when A53 core

The following code changes in imx-atf assign the UART1 used as debug

console for the M4 core to the M4 domain. Other peripherals need to be added

as required for the application.

3. Modify the Linux Devicetree

3.1 Adding the Devicetree Nodes

Add the following nodes to your board devicetree's root node in order to set up

the memory for the M4 core and the remoteproc driver.

TF-A code changes to assign UART1 to M4 domain

--- a/plat/imx/imx8m/imx8mm/imx8mm_bl31_setup.c
+++ b/plat/imx/imx8m/imx8mm/imx8mm_bl31_setup.c
@@ -58,7 +58,7 @@ static const struct imx_rdc_cfg rdc[] = {
 RDC_MDAn(RDC_MDA_M4, DID1),

 /* peripherals domain permission */
- RDC_PDAPn(RDC_PDAP_UART4, D1R | D1W),
+ RDC_PDAPn(RDC_PDAP_UART1, D1R | D1W),
 RDC_PDAPn(RDC_PDAP_UART2, D0R | D0W),

 /* memory region */

Step only needed for Example 2

This step is only needed for "Example 2". It can be skipped if only "Example 1" is used (loaded

from U-Boot).

DDR addresses

The example from NXP is configured for the NXP EVK with 2GB of DDR RAM. If your hardware

has less RAM available, you might have to adjust the memory mapping of the M4 app and

change the devicetree accordingly. For 1GB of DDR using 0x77000000 as base for the M4 app

and 0x78000000 for the shared resources should work. In the M4 app MEMORY in

MIMX8MM6xxxxx_cm4_ddr_ram.ld and VDEV0_VRING_BASE in board.h needs to be changed.

Devicetree Nodes for the M4 Core

3.2 Disable M4 Peripherals in Linux

At this point we also need to make sure, that no peripherals are probed by

Linux that are assigned to M4 domain. In our case we need to disable UART1:

/ {
 [...]

 reserved-memory {
 #address-cells = <2>;
 #size-cells = <2>;
 ranges;

 m4_reserved: m4@0x80000000 {
 reg = <0 0x80000000 0 0x1000000>;
 no-map;
 };

 vdev0vring0: vdev0vring0@b8000000 {
 reg = <0 0xb8000000 0 0x8000>;
 no-map;
 };

 vdev0vring1: vdev0vring1@b8008000 {
 reg = <0 0xb8008000 0 0x8000>;
 no-map;
 };

 rsc_table: rsc_table@b80ff000 {
 reg = <0 0xb80ff000 0 0x1000>;
 no-map;
 };

 vdevbuffer: vdevbuffer@b8400000 {
 compatible = "shared-dma-pool";
 reg = <0 0xb8400000 0 0x100000>;
 no-map;
 };
 };

 imx8mm-cm4 {
 compatible = "fsl,imx8mm-cm4";
 clocks = <&clk IMX8MM_CLK_M4_DIV>;
 mbox-names = "tx", "rx", "rxdb";
 mboxes = <&mu 0 1
 &mu 1 1
 &mu 3 1>;
 memory-region = <&vdevbuffer>, <&vdev0vring0>, <&vdev0vring1>,
<&rsc_table>;
 syscon = <&src>;
 };

 [...]
};

4. Modify the Kernel Configuration

In order to build the drivers used in this example, we enable the following in

our defconfig .

5. Example 1: Loading and Starting through U-Boot

The compiled application's BIN file is copied to the DDR via TFTP (or

alternatively from some storage device).

--- a/arch/arm64/boot/dts/freescale/imx8mm-kontron-n801x-s.dts
+++ b/arch/arm64/boot/dts/freescale/imx8mm-kontron-n801x-s.dts
@@ -307,7 +307,7 @@ &uart1 {
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_uart1>;
 uart-has-rtscts;
- status = "okay";
+ status = "disabled";
 };

Step only needed for Example 2

This step is only needed for "Example 2". It can be skipped if only "Example 1" is used (loaded

from U-Boot).

+CONFIG_REMOTEPROC=y
+CONFIG_REMOTEPROC_CDEV=y
+CONFIG_IMX_REMOTEPROC=y
+CONFIG_RPMSG_CHAR=m
+CONFIG_RPMSG_CTRL=m
+CONFIG_RPMSG_VIRTIO=m
+CONFIG_IMX_RPMSG_PINGPONG=m

=> tftp 0x42000000 hello_world.bin
Using ethernet@30be0000 device
TFTP from server 192.168.1.10; our IP address is 192.168.1.11
Filename 'hello_world.bin'.
Load address: 0x42000000
Loading: #
 2.7 MiB/s

Next, we copy the executable from DDR to the internal TCML memory, where

we want to start it from.

At last we will use the bootaux command to start the app.

At this point you should closely watch the UART console attached to the M4. It

will print "hello world" ans start echoing all characters it receives.

6. Example 2: Loading and Starting through Linux

After booting the system with the modifications applied as described before,

we need to copy the compiled M4 application's ELF file to the root filesystem.

In our example we copy the rpmsg_lite_pingpong_rtos_linux_remote.elf to

/lib/firmware .

done
Bytes transferred = 14260 (37b4 hex)

=> cp.b 0x42000000 0x7e0000 ${filesize}

=> bootaux 0x7e0000
No elf image at address 0x007e0000
Starting auxiliary core stack = 0x20020000, pc = 0x1FFE02CD...

Linux Kernel Clock Gating

To make sure that the app running on the M4 core will continue to be executed and not freeze

when Linux is booted, the kernel needs to be told to not gate the system clocks. This can be

done by adding the parameter clk-imx8mm.mcore_booted=1 to the kernel commandline.

Usually this can be done by appending the value to the bootargs_base variable in the U-Boot

environment.

Required Kernel Version

While "Example 1" works fine with the v5.10-ktn kernel branch, this example requires

additional patches for the remoteproc and rpmsg frameworks from later kernel versions. To

make it work you either need a recent mainline kernel (tested on 5.19-rc5) or you need to

integrate the backport for v5.10 provided here.

https://git.kontron-electronics.de/sw/misc/linux/-/commits/v5.10-ktn
https://git.kontron-electronics.de/sw/misc/linux/-/commits/v5.10-ktn-remoteproc-rpmsg-backport-5.19-rc5

Next we can load the executable into the M4 core using the remoteproc sysfs

interface:

Once loaded we can start the execution of the M4 application:

From the kernel log we can see that the M4 core was brought up and the

rpmsg application on the M4 already bound itself to the kernel and announced

the available communication channels.

At this point you should also see some messages printed to the M4 console:

7. Loading the rpmsg Client Driver Kernel Module

Now the last part of the demo is to load the rpmsg client driver that uses the

message bus to communicate with the already running M4 application.

root@kontron-mx8mm:~# echo -n
rpmsg_lite_pingpong_rtos_linux_remote.elf > /sys/class/remoteproc/
remoteproc0/firmware

root@kontron-mx8mm:~# echo start > /sys/class/remoteproc/
remoteproc0/state
[7348.685563] remoteproc remoteproc0: powering up imx-rproc
[7348.692688] remoteproc remoteproc0: Booting fw image
rpmsg_lite_pingpong_rtos_linux_remote.elf, size 409576
[7348.702909] remoteproc0#vdev0buffer: assigned reserved memory
node vdevbuffer@b8400000
[7348.712718] virtio_rpmsg_bus virtio0: rpmsg host is online
[7348.718388] remoteproc0#vdev0buffer: registered virtio0 (type
7)
[7348.724550] remoteproc remoteproc0: remote processor imx-rproc
is now up
[7349.714126] virtio_rpmsg_bus virtio0: creating channel rpmsg-
openamp-demo-channel addr 0x1e

RPMSG Ping-Pong FreeRTOS RTOS API Demo...
RPMSG Share Base Addr is 0xb8000000
Link is up!
Nameservice announce sent.

NXP provides a demo kernel driver imx_rpmsg_pingpong that communicates

with the rpmsg_lite_pingpong_rtos app on the M4.

As soon as we load the driver module we will see the output of the messages

being sent and received in the kernel log and on the M4 console.

root@kontron-mx8mm:~# modprobe imx_rpmsg_pingpong

Pingpong Demo Messages

root@kontron-mx8mm:~# modprobe imx_rpmsg_pingpong
[8073.867508] 90:init
[8073.869731] 42:rpmsg_pingpong_probe
[8073.873232] imx_rpmsg_pingpong virtio0.rpmsg-openamp-demo-channel.-1.30:
new channel: 0x400 -> 0x1e!
[8073.885947] get 1 (src: 0x1e)
[8073.892351] get 3 (src: 0x1e)
[8073.897069] get 5 (src: 0x1e)
[8073.901646] get 7 (src: 0x1e)
[8073.906147] get 9 (src: 0x1e)
[8073.910645] get 11 (src: 0x1e)
[8073.915247] get 13 (src: 0x1e)
[8073.919844] get 15 (src: 0x1e)
[8073.924436] get 17 (src: 0x1e)
[8073.929131] get 19 (src: 0x1e)
[8073.933734] get 21 (src: 0x1e)
[8073.938321] get 23 (src: 0x1e)
[8073.942935] get 25 (src: 0x1e)
[8073.947551] get 27 (src: 0x1e)
[8073.952152] get 29 (src: 0x1e)
[8073.956758] get 31 (src: 0x1e)
[8073.961358] get 33 (src: 0x1e)
[8073.965946] get 35 (src: 0x1e)
[8073.970533] get 37 (src: 0x1e)
[8073.975128] get 39 (src: 0x1e)
[8073.979737] get 41 (src: 0x1e)
[8073.984334] get 43 (src: 0x1e)
[8073.988941] get 45 (src: 0x1e)
[8073.993539] get 47 (src: 0x1e)
[8073.998127] get 49 (src: 0x1e)
[8074.002713] get 51 (src: 0x1e)
[8074.007308] get 53 (src: 0x1e)
[8074.011917] get 55 (src: 0x1e)
[8074.016512] get 57 (src: 0x1e)
[8074.021120] get 59 (src: 0x1e)
[8074.025718] get 61 (src: 0x1e)
[8074.030304] get 63 (src: 0x1e)
[8074.034902] get 65 (src: 0x1e)
[8074.039505] get 67 (src: 0x1e)
[8074.044105] get 69 (src: 0x1e)
[8074.048713] get 71 (src: 0x1e)
[8074.053332] get 73 (src: 0x1e)
[8074.057918] get 75 (src: 0x1e)
[8074.062506] get 77 (src: 0x1e)

[8074.067102] get 79 (src: 0x1e)
[8074.071710] get 81 (src: 0x1e)
[8074.076308] get 83 (src: 0x1e)
[8074.080916] get 85 (src: 0x1e)
[8074.085514] get 87 (src: 0x1e)
[8074.090103] get 89 (src: 0x1e)
[8074.094690] get 91 (src: 0x1e)
[8074.099285] get 93 (src: 0x1e)
[8074.103889] get 95 (src: 0x1e)
[8074.108488] get 97 (src: 0x1e)
[8074.113095] get 99 (src: 0x1e)
[8074.117698] get 101 (src: 0x1e)
[8074.120850] imx_rpmsg_pingpong virtio0.rpmsg-openamp-demo-channel.-1.30:
goodbye!
[8074.229325] imx-rproc imx8mm-cm4: imx_rproc_kick: failed (0, err:-62)

RPMSG Ping-Pong FreeRTOS RTOS API Demo...
RPMSG Share Base Addr is 0xb8000000
Link is up!
Nameservice announce sent.
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...

Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...
Sending pong...
Waiting for ping...

References

AN5317: "Loading Code on Cortex-M from U-Boot/Linux for the i.MX

Asymmetric Multi-Processing Application Processors"

ST Wiki: "Linux RPMsg framework overview"

Detlev Zundel: "Using the M4 MCU on the i.MX8M Mini"

Detlev Zundel: "Basic AMP on the i.MX8M Mini with Rpmsg"

NXP MCUXpresso SDK

Linux Kernel Docs: "Remote Processor Framework"

Linux Kernel Docs: "Remote Processor Messaging (rpmsg) Framework"

Sending pong...
Ping pong done, deinitializing...
Looping forever...

•

•

•

•

•

•

•

https://www.nxp.com/docs/en/application-note/AN5317.pdf
https://www.nxp.com/docs/en/application-note/AN5317.pdf
https://www.nxp.com/docs/en/application-note/AN5317.pdf
https://www.nxp.com/docs/en/application-note/AN5317.pdf
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
https://wiki.st.com/stm32mpu/wiki/Linux_RPMsg_framework_overview
https://blog.lazy-evaluation.net/posts/embedded/imx8mm-evk-m4-intro.html
https://blog.lazy-evaluation.net/posts/embedded/imx8mm-evk-m4-intro.html
https://blog.lazy-evaluation.net/posts/embedded/imx8mm-evk-simple-rpmsg.html
https://blog.lazy-evaluation.net/posts/embedded/imx8mm-evk-simple-rpmsg.html
https://github.com/NXPmicro/mcux-sdk
https://github.com/NXPmicro/mcux-sdk
https://docs.kernel.org/staging/remoteproc.html
https://docs.kernel.org/staging/remoteproc.html
https://docs.kernel.org/staging/rpmsg.html
https://docs.kernel.org/staging/rpmsg.html

	Manual for i.MX-based Hardware and BSPs
	BL i.MX8MM Boards and Demo Kits

	BSP Overview
	Hardware
	SoCs
	On-Board Memory
	Interfaces
	Miscellaneous

	Software

	Yocto Build System
	Repository and Directory Structure
	Example Setup
	Modify the BSP
	Modifying the Kernel Configuration
	With Bitbake
	In a 'devshell'

	Modifying the Kernel Code

	Booting an Image
	Boot Chain Overview
	SPL
	TF-A BL31 (only i.MX8MM)
	U-Boot

	Booting from SD Card
	System Boot diagram A/B Partition

	Using the Internal Flash Storage
	Partition Layout
	Kontron i.MX8MM
	Kontron i.MX6UL

	Factory Setup / Initial Partitioning
	Install Images
	using ptool
	using Swupdate (only Kontron i.MX8MM)
	Why Do we Need a Bootfs Image?
	Why Do we Need a Userfs Image?

	Perform Seamless System Update using SWUpdate
	Creating an SWUpdate Image
	Install Update with Integrated Webserver

	Using the System
	Release Notes
	5.0.0 (2022-04)
	Supported Hardware
	DK i.MX8MM: Demokit with i.MX8MM SoM (N801x-S)
	DK i.MX6UL/ULL: Demokit with i.MX6UL/ULL SoM (N6x1x-S)

	Changelog

	4.0.0-beta (2020-11-02)
	Supported Hardware
	DK i.MX8MM: Demokit with i.MX8MM SoM (N801x-S)

	Changelog
	Notes
	[1] HDMI Support
	[2] GPU/Graphics Support
	[3] Power-Domain Support

	3.0.0-alpha3 (2020-03-23)
	Supported Hardware
	DK i.MX8MM: Demokit with i.MX8MM SoM (Preliminary Development Revision N8010-Rev0 and n8010)
	DK i.MX6UL/ULL: Demokit with i.MX6UL/ULL SoM

	Changelog
	Notes
	[1] HDMI Support
	[2] GPU/Graphics Support

	3.0.0-alpha2 (2020-01-29)
	Supported Hardware
	DK i.MX8MM: Demokit with i.MX8MM SoM (Preliminary Development Revision)
	DK i.MX6UL/ULL: Demokit with i.MX6UL/ULL SoM

	Changelog
	Notes
	[1] HDMI Support

	3.0.0-alpha (Initial Release, 2019-12-19)
	Supported Hardware
	DK i.MX8MM: Demokit with i.MX8MM SoM (Preliminary Development Revision)
	DK i.MX6UL/ULL: Demokit with i.MX6UL/ULL SoM

	Changelog

	Issue Tracker
	Hardware Overview
	SoM Models
	Board Models

	Using the System
	Boot Devices

	Hardware Overview
	SoM Models
	Demo Kits

	Getting Started
	Getting Started with i.MX8MM
	Connecting Power
	Connecting the Debug Cable
	First Start
	Troubleshooting

	Building your own system
	Installing Prerequisites
	Cloning the Core Repository (yocto-ktn)
	Initializing the Build Environment
	Building the first System Image
	Checking the Build
	Booting the System Image

	Modifying the System
	Creating a new Layer

	Examples using Python 3
	Serial Communication
	CAN-Bus Communication

	Writing the System Image to eMMC Memory
	Preparations
	Writing the System Image to eMMC Memory

	Writing the Bootloader to NOR Flash
	Locating needed files
	Preparations
	Writing the Bootloader

	BL i.MX8MM (N801x S)
	Board Layout and Connectors
	IOs
	Serial Devices
	CAN-Bus Interface

	Using the System
	Boot Devices
	SPI NOR Boot
	Probing the SPI NOR
	Erasing the whole flash
	Loading the SPL image
	Writing the SPL image (offset: 1 KiB)
	Loading the U-Boot image
	Writing the U-Boot image (offset: 320 KiB)

	Qt Applications and Backends
	Using the DIOs
	Examples
	DIO as Outputs
	DIO as Inputs

	Using Serial Devices
	Configure UART1 (RS232)
	Configure UART2 (RS485)
	Examples
	RS232 communication
	RS485 communication

	Using CAN-Bus
	Checking CAN availability
	Configure and activate the CAN interface
	Examples
	Receiving data
	Sending data

	Using the Cortex M4 Core
	Using the Cortex M4 Core on Kontron i.MX8MM Boards
	1. Compiling an Application for the M4 Core
	2. Modify the TF-A code to assign peripherals to the correct RDC domain
	3. Modify the Linux Devicetree
	3.1 Adding the Devicetree Nodes
	3.2 Disable M4 Peripherals in Linux

	4. Modify the Kernel Configuration
	5. Example 1: Loading and Starting through U-Boot
	6. Example 2: Loading and Starting through Linux
	7. Loading the rpmsg Client Driver Kernel Module
	References

