
Overview

On this website you can find the official public documentation for the Linux-

based software BSPs and the demo hardware from Kontron Electronics GmbH

(formerly exceet electronics GmbH).

In the menu on the left side you can find some general information about the

Kontron BSPs and boards.

For more specific information about the platform of your choice, please use the

dropdown menu on the top of the page to switch to the documentation of a

platform/BSP-version.

Prerequisites

In most cases, the documentation covers only the very basic aspects of how to use, build,

configure and setup the hardware and software for general purposes. We assume, that the

reader has some background knowledge in the area of embedded Linux and it might be

needed to consult other ressources.



Company Name

This documentation uses the acronym "KED" (which means "Kontron Electronics

Deutschland") to refer to "Kontron Electronics GmbH", which is part of "Kontron S&T AG".



Coustomized Hard- and Software

Coustomized hard- and software is not part of this documentation. Please consult Kontron

Electronics for information about your customer-specific project.



Open-Source

Most parts of our software and documentation are open-source. We support the idea behind

FOSS and actively contribute to projects such as Linux, U-Boot and Yocto/OE.



https://en.wikipedia.org/wiki/Free_and_open-source_software

Contribute

If you work with our hard- and software or with the documentation, we would like to

encourage you to contribute by reporting issues or sending merge requests. Please see

Contribute for further information on how to do so.



Software Licensing

Licenses of Software Packages

The software delivered with boards and modules (Board Support Package,

BSP) by Kontron Electronics GmbH contains open-source software with license

agreements that, among other things, restrict linking against closed-source

applications (e.g. GPL, LGPL). Before using any of the libraries or applications, it

is therefore necessary to check the license agreements of the used source

code. The licenses are contained within the source code of the software

packages. Furthermore it is necessary to check any valid patents and license

conditions of the used software, especially for multimedia formats (e.g. mp3

format). Kontron Electronics GmbH does not assume any liability for

infringements of patents or license agreements of parts of the provided BSP.

Inside the Yocto build system you find a directory in <builddir>/tmp/deploy/

licenses , that holds copies of all the licenses of the packages, that were built.

To get a list of all the packages and their licenses included in your image, you

can look at the file license.manifest in <builddir>/tmp/deploy/licenses/

<full-image-name> .

If you have no access to those files, feel free to ask KED to provide them for

you.

Company Name

As for the other parts of the documentation, this page uses the acronym "KED" (which means

"Kontron Electronics Deutschland") to refer to "Kontron Electronics GmbH", which is part of

"Kontron S&T AG".



Completeness and Correctness

The information on this page does not make any claim to be complete or to be legally correct.

It is intended to give a basic idea of licensing how we at KED understand it and can serve as a

starting point for your own considerations.



Typical open-source licenses

Here are some notes and further information on different licenses.

GPLv2 used by the Linux kernel and many other packages

If you release or redistribute a product, that includes software under GPLv2,

you are bound to provide the source code of those parts with your product

(copyleft). You can either include the source code with your product and deliver

it together, or you can include a written offer to provide the source code when

requested.

Attention: GPLv2 does not allow you to provide the source code via a

network service (e.g as download). You must deliver it on physical media.

Only GPLv3 allows delivery via downloads.

Many GPLv2 licensed packages include the possibility to license it under a

later version of the same license (e.g. GPLv3), but the Linux kernel for

example is GPLv2 only.

If you use code inside your application that is licensed under the GPL you

must not keep your application code closed, you are obligated to use the

GPL and have to provide the programs source code to your customers.

Frequently Asked Questions (FAQ)

A Practical Guide to GPL Compliance

GPLv3

The GPLv3 is the modernized and updated version of the GPLv2.

See http://www.gnu.org/licenses/quick-guide-gplv3.html.

LGPLv2.1 used by many libraries

The LGPL is similar to the GPL, but allows that your own proprietary

applications link against libraries that are licensed under LGPL, without the

need to make your application code public. If you make changes or additions to

the original software, you have to provide these changes to your customer.

•

•

•

•

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#GPLRequireSourcePostedPublic
https://softwarefreedom.org/resources/2008/compliance-guide.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/quick-guide-gplv3.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

LGPLv3

The LGPLv3 is the modernized and updated version of the LGPLv2.

MIT

The MIT license even allows you to modify and distribute software packages,

without the need to publish the source code (no copyleft). It is still necessary to

include the license notice in your product.

BSD

The BSD license is similar to the MIT license and has no copyleft.

Proprietary licenses (e.g Freescale/NXP or other HW
manufacturers)

The BSP might also contain packages, firmware or drivers, that are licensed

under proprietary licenses by the manufacturer or other third parties.

Depending on your product, those agreements need to be checked for

compliance.

License compliance

It is essential to make sure, that your final product complies with all the

licenses of the included software packages. As mentioned in the last

paragraph it depends on the used licenses what you have to do for a full

license compliance.

Notification in the manual

Almost all licenses require that you inform your customers in your manual that

you use open-source software. You have to mention that parts of your

software are open-source software and deliver a list of the components you

are using and their particular licenses.

http://www.gnu.org/licenses/lgpl.html
https://opensource.org/licenses/MIT
https://en.wikipedia.org/wiki/BSD_licenses

Source code delivery

If you are using software licensed as GPL or LGPL you have to deliver the source

code and license texts of this software to your customers or at least, make it

possible that your customer can get it. There a several options to achieve this.

Direct delivery with your product: You can accompany your product with a

volume containing all used source code under the mentioned licenses.

Written offer: You can state in your manual that every customer of your

product can get a copy of the source code as long as the delivery of your

product is no longer ago than three years or as long as you deliver spare

parts. It is allowed to ask for a small fee to cover your expenses.

Download (For (L)GPL V3 code only): You can send your customers a link

where they can download the source code. You have to guarantee that the

link will be accessible for the same time as it would be for the written offer.

KED will automatically generate an archive with the used source code files

of your product. Due to the size of this file of a few GB we will not send it to

you every time it will be generated.

Please feel free to contact KED whenever you need this archive. Please be

aware that we only can integrate the source code of the programs we have

access to. If you add further open-source software, you have to append

these sources to our archive.

Adding own software to your product

If you are using (L)GPL in version 3 licensed code you have, for version 2 it is

recommended, to give your customer the opportunity to install his own

programs on your product. For code under (L)GPL version 3 you are obligated to

grant your customer the right to install his own programs on your product.

Version 2 of the license only recommends, but does not enforce this. To ensure

the security of your device, this opportunity does not have to be included in

your product from the beginning, it is appropriate to require your customer to

send the product back to you and you will disable the necessary security

features to allow the installation of custom programs. You can demand that all

•

•

•

given warranties of your product will expire at the time of applying custom

software.

Exemplary text for your manual:

English:

This product contains software components which are licensed as
free
respectively open-source software under the GNU General Public
License, versions
2 or 3, or the GNU Lesser General Public License, versions 2.1 or
3.
Everyone can get the source code of this software components from
us on a data
storage medium (CD-ROM, DVD, USB drive) if requested at our
customer support at
the following address within three years after the delivery of the
product or as
long as we offer spare parts or support for the product.

[Name of the company]
[Contact person]
[Address]

Including the statement of the following product data:

[Product name]
[Serial number]
[Date of delivery]

We also require a fee of EUR 10,- for the costs of preparation of
the medium and
shipping to be transferred to the following bank account [Bank
account]
Preventive it should be mentioned here that using the right of
installing own
versions of the open-source software components, which is
guaranteed in the
license contract, will expire all certifications and warranties of
the product.
The operation of the manipulated product will happen on one's own
authority.

German:

Dieses Produkt enthält Softwarebestandteile, die von den
Rechteinhabern als
Freie Software bzw. Open Source Software unter der GNU General
Public License,
Versionen 2 bzw. 3, bzw. der GNU Lesser General Public License,
Versionen 2.1
bzw. 3.0, lizenziert werden. Jedermann kann den Quellcode dieser
Softwarebestandteile von uns auf einem Datenträger (CD-ROM, DVD
oder USB-Stick)
erhalten, wenn innerhalb von drei Jahren nach der Auslieferung des
Produkts an
den Kunden oder solange, wie wir Ersatzteile oder Support für das
Produkt
anbieten, eine Anfrage an unsere Kundenbetreuung an folgende
Adresse

[Name der Firma]
[Ansprechpartner]
[Adresse]

mit Angabe folgender Produktdaten

[Name]
[Seriennummer]
[Auslieferungsdatum]

gestellt wird und EUR 10,- für die Kosten zur Erstellung des
Datenträgers und
dessen Versendung vorab auf folgendes Konto [Kontoverbindung]
überwiesen werden.
Vorsorglich wird darauf hingewiesen, dass die Nutzung des im
Lizenzvertrag
zugesicherten Rechts, die Open Source Komponenten gegen eigene
Versionen
auszuwechseln, zum Erlöschen der Zertifizierung bzw. Garantie
führt. Der Betrieb
des entsprechend geänderten Gerätes erfolgt auf eigene
Verantwortung.

Building Yocto image from source code

Install Yocto as described here: https://www.yoctoproject.org/docs/current/

mega-manual/mega-manual.html Unpack the archive in the yocto main folder.

Setup your environment and download the missing code to build the image.

Attention: Some of the code could not be downloaded as it has a proprietary

license. Remove these components of the image.

If you have questions, please contact support@kontron-electronics.de.

Using Qt in a Product

There are several licensing options for Qt. You should decide on one of them

before starting to design your application, as switching from the open-source

license to the commercial license is not allowed.

Here are some sources for further information:

Qt Licensing

Qt: Making the right licensing decision

http://doc.qt.io/qt-5/licensing.html
http://blog.qt.io/blog/2009/11/30/qt-making-the-right-licensing-decision/

Git Server Overview

The relevant repositories are hosted on a public GitLab server at https://

git.kontron-electronics.de. You can find all public repositories here.

The software environment consists of several parts described below.

KED Yocto Core Repository

The Yocto core repository bundles some documentation and useful scripts to

initialize and manage Yocto-builds for Kontron hardware. Cloned to your local

file system, the yocto-ktn directory is used as a root directory for the build

environment.

Directory Tree (summary)

KED Yocto Build Repositories

The build repositories contain the configuration for a specific Yocto build. It

defines the layers and revisions used. For a list of available build repositories,

look for the projects prefixed with build- here. The build repositories are

cloned to the yocto-ktn directory.

Web-URL: https://git.kontron-electronics.de/yocto-ktn/yocto-ktn
Git-URL: https://git.kontron-electronics.de/yocto-ktn/yocto-ktn.git

yocto-ktn
│
├── docs # some generic documentation sources (e.g. for
this page)
├── layers # empty directory to store meta-layers
├── scripts # scripts to automate certain tasks
└── init-env # this is a script to initialize the build
environment

https://git.kontron-electronics.de/explore/projects?non_archived=true
https://git.kontron-electronics.de/yocto-ktn

After finishing the build, the build directory also holds the tmp subdirectory

with all the intermediate and final build results and products.

Directory Tree (summary)

KED Yocto Meta Layers

The KED Yocto meta layers, together with other layers provided by the SoC

vendors and the OE community, contain the actual metadata for everything

that is put into the resulting BSP.

In the KED build system all layers are put into the yocto-ktn/layers directory.

meta-ktn

This layer contains configuration for the ktn distribution, generic recipes for

KED applications, modifications and appends.

For all BSP versions based on the Rocko -branch and earlier, this layer is the

only layer provided by KED and contains only i.MX6-based machines. Later BSP

releases use a different scheme (see below).

build-*
│
├── ci # scripts and config for the KED CI builds
├── conf # configuration directory
| ├── local.conf # contains local build settings (usually
not tracked by git)
| ├── bblayers.conf # defines the directories parsed by bitbake
| └── repo.conf # defines the repositories handled by 'init-
env' and
| # 'meta-*' scripts
|
└── docs # build-/platform-specific documentation
sources

Web-URL: https://git.kontron-electronics.de/yocto-ktn/meta-ktn
Git-URL: https://git.kontron-electronics.de/yocto-ktn/meta-ktn.git

Directory Tree (summary)

meta-ktn-* (only for BSPs based on "Thud"-branch and later)

From BSP releases based on the "Thud"-branch and later, meta-ktn is only

used for platform-agnostic meta data and additional layers prefixed with

meta-ktn- are used for platform-specific support (e.g. machine

configurations).

meta-ktn-imx

meta-ktn-stm32mp

Directory Tree (summary)

meta-ktn
│
├── classes # OE Metadata classes (.bbclass)
├── conf # OE Metadata configuration (layer, distro,
machines)
├── freescale-layer # OE Metadata depending on the meta-
freescale layer
├── networking-layer # OE Metadata depending on the meta-
networking layer
├── qt5-layer # OE Metadata depending on the meta-qt5 layer
├── swupdate # OE Metadata depending on the meta-swupdate
layer
└── recipes-* # OE Metadata recipes (.bb, .bbappend)

Web-URL: https://git.kontron-electronics.de/yocto-ktn/meta-ktn-imx
Git-URL: https://git.kontron-electronics.de/yocto-ktn/meta-ktn-
imx.git

Web-URL: https://git.kontron-electronics.de/stm32mp/meta-ktn-
stm32mp
Git-URL: https://git.kontron-electronics.de/stm32mp/meta-ktn-
stm32mp.git

meta-ktn-*
│
├── conf # OE Metadata configuration (layer, distro,

KED Customer Repositories

The default repositories to build BSPs for demo and evaluation hardware are

public and require no authentication. Customer-specific repositories might be

private and need an user account on the GitLab server. To gain access to such

repositories please request a useraccount on the Kontron Electronics GitLab

server. We recommend to use SSH and authentication with keys.

Documentation

The generic public documentation can be found in the yocto-ktn repository

(see above). Further platform-specific documentation are located in the docs

directories inside the corresponding build repositories (see above).

All documentation is written in the Markdown markup language and is rendered

to HTML by mkdocs .

machines)
├── qt5-layer # OE Metadata depending on the meta-qt5 layer
├── swupdate # OE Metadata depending on the meta-swupdate layer
├── recipes-* # OE Metadata recipes (.bb, .bbappend)
└── wic # configuration for the OE Image Creator (Wic)

mailto:support@kontron-electronics.de

Yocto Build System

This chapter explains the steps necessary to setup and use the Yocto-based

build system in order to generate BSP images for Kontron hardware. After

setting up the system you can start a build and get a bootloader, kernel image

and root filesystem to run on your target hardware.

This is a generic guide, that only describes the basic setup. For practical

examples and more details for your platform of choice, please see the

platform-specific guides:

KED Yocto Build System for NXP i.MX

KED Yocto Build System for STM32MP1

Please note that Kontron Electronics might also provide you with a pre-

configured virtual machine image. If you use this, the build system is already

installed and you can immediately start to build an image for your target

device.

Ubuntu 18.04 LTS 64-bit is used as reference OS for the development PC.

Installing Prerequisites

If you start from the beginning, it might be necessary to install some

prerequisites on your development PC. Therefore do

to update your package index. Afterwards start the package manager apt to

install the required packages:

•

•

sudo apt update

sudo apt install git-core gcc g++ python gawk chrpath texinfo
libsdl1.2-dev \
 gdb-multiarch gcc-multilib g++-multilib

https://docs.kontron-electronics.de/yocto-ktn/build-ktn-imx/build-system.html
https://docs.kontron-electronics.de/stm32mp/build-stm32mp/build-system.html

Please also see the official Yocto docs for additional packages, that might be

needed.

GitLab Server and Repositories

For an overall overview of the server and the available reposiories, please

consult the "Git Server Overview" page.

Gaining Access to Private Repositories on the KED GitLab Server

Generating a SSH-key on your Machine

First check if you already have an existing SSH-key in ~/.ssh/ (id_rsa and

id_rsa.pub). If yes you can use it in the next step. If not use the following

commands to generate a key:

You can add a passphrase for additional security when prompted. For more

information on SSH authentication please visit the Ubuntu Help.

Adding the SSH-key to your GitLab Account

In the top right corner click on your profile picture. Click "Settings" and navigate

to "SSH Keys" in the left navigation. Copy and paste your key and give it a name

(e.g. work-pc). Copy the content of your ida_rsa.pub file from the previous

step and paste it in the "Key" input field. Click "Add Key".

Skip if you only intend to use public repositories

All the repositories that are not customer- or project-specific are publicly accessible.

Therefore to get started with an Eval-Kit or generic Kontron hardware, you can skip this step



mkdir ~/.ssh
chmod 700 ~/.ssh
ssh-keygen -t rsa

https://www.yoctoproject.org/docs/2.4/ref-manual/ref-manual.html#required-packages-for-the-host-development-system
https://help.%0Aubuntu.com/community/SSH/OpenSSH/Keys

Repository and Directory Structure

This is how the directory tree with the most important files and directories will

look like:

yocto-ktn # the core repository
│
├── build-foo # a build repository
│ │
│ ├── conf
│ │ ├── repo.conf # specifies the revisions of all layers
│ │ ├── local.conf # specifies local settings for the
build
│ │ └── bblayers.conf # specifies all layers that will be
parsed by bitbake
│ │
│ └── tmp # contains all of the build data
│ ├── deploy
│ │ ├─ images # contains image files and binaries
for the target
│ │ ├─ ipk # contains packages
│ │ ├─ licenses # contains licenses of the packages in
use
│ │ └─ sdk # contains SDK and toolchain binaries
│ │
│ └── work
│ └─ ... # contains all source and build files
for the packages
│
├── layers # contains all meta layers with recipes
│ │ # (each one is a git repository)
│ │
│ ├ poky # contains the Yocto/Poky build system
and meta data
│ ├ meta-openembedded # contains basic meta layers
│ ├ meta-ktn # contains basic Kontron adaptations
and modifications
| ├ meta-ktn-xyz # contains Kontron platform
adaptations and modifications
│ └ ...
│
├── scripts # contains scripts to automate certain
tasks
├── downloads # contains all the files downloaded by
the fetcher
│ # (shared by all builds)

Cloning

Cloning the Core repository (yocto-ktn)

To clone the necessary repositories for your build, go to a directory on your

system where you want all the data needed (including source files, build,

cache, config, etc.) to be saved (usually $HOME). Please note, that - depending

on your build - this usually requires a lot of disk space (> 50 GB). If you have to

choose between a SSD and a HDD for running the build, use the SSD as this

gives you a little extra speed.

When using SSH access, add the Kontron Electronics GitLab server to the list of

known SSH hosts on your machine by running:

Clone the main repository (yocto-exceet). Please note, that the subdirectory

yocto-exceet is created automatically.

Cloning Additional Build Repositories

Customer-specific data like kernel configurations, devicetrees for custom

boards, custom recipes, etc. is kept in a separate meta-layer within the yocto-

ktn system. Customer-specific build configurations are also kept in a separate

build directory. The default build configurations for Kontron Electronics Eval-

Kits and standard hardware are also kept in repositories like build-ktn-imx or

build-stm32mp .

├── sstate-cache # contains the sstate cache (shared by
all builds)
└── init-env # this is a script to initialize the
build environment

cd ~

ssh git@git.kontron-electronics.de

git clone https://git.kontron-electronics.de/yocto-ktn/yocto-
ktn.git

The most convenient way to initialize a build and clone all necessary

repositories is by using the init-env script. Run this script with the desired build

configuration (name of the build repo) as argument. See Initializing the build

environment.

Initializing the Build Environment

Before being able to build an image, the metadata for all components needs to

be fetched. This is usually done through initializing the environment by

sourcing the init-env script.

By default this script also runs the meta-update script (see Updating the

repositories).

Sourcing the init-env script automates the following tasks:

Running the meta-update script from yocto-ktn/scripts/

Updating the core repository (yocto-ktn) to the latest revision

Cloning/Updating the build-repository (only if -u option is used)

Parsing the file conf/repo.conf in the build directory

Cloning/Updating all meta layers to the revisions from repo.conf

Running the oe-init-build-env script from layers/openembedded-core

Initialize the build environment for Bitbake

If no conf/local.conf file exists in the build-directory, create one

from the template

Selecting a machine if the -m option is used, by setting the environment

variable MACHINE .

Metadata and Repository Overview

For an overview of the repositories and a summary of the metadata inside them, please have

a look at the "Git Server Overview" page.



1.

a.

b.

c.

d.

2.

a.

b.

3.

For other options of init-env and meta-update, please run . init-env -h or

meta-update -h .

By sourcing init-env you also change to the build directory and therefore you

are ready to run the bitbake command.

Examples

Here are some examples for intializing different kinds of builds.

To Init the 'build-ktn-imx' for the 'kontron-mx6ul' Machine:

To use a custom build-<customer> :

To use a custom build-<customer> with a specific Yocto BSP branch (only if

multiple branches such as thud, warrior, etc. are available):

To initialize the environment and update to the latest revision of the build

repository, use the -u (update) option:

To initialize the environment and skip checkout errors (e.g. when you have local

uncommited changes in some layer), use the -s option:

cd ~/yocto-ktn

. init-env -m kontron-mx6ul build-ktn-imx

Important

When building for the first time you additionally have to set the option -u



. init-env build-<customer>

. init-env -r <BSP branch> build-<customer>

. init-env -u build-<customer>

After initializing, you are ready to build a recipe, a complete image or the sdk

for your machine with the Yocto Bitbake tool. See Using Bitbake for further

information.

Updating the Repositories

As time goes by new versions of the used layers may be available. Updating the

repositories is conveniently done by running the meta-update script in yocto-

exceet/scripts . However this is often not necessary, because it is

automatically run while initializing the build environment.

The meta-update script tries to fetch the most recent versions of the core

repository (yocto-ktn) and the (customer) build repository (only if option -u is

set) from the server and then parses the repo.conf file in the build repository.

The meta-layers with the specified revisions are then checked out to yocto-

exceet/layers . The meta-update script needs to know the current build, but

you usually don't need to set the -b option as the script gets the current build

from an environment variable BUILDDDIR , that is set while running init-env .

To update the current build without using init-env you can run meta-update

directly:

If you only want to check out the meta-layers specified in repo.conf , maybe

because you ran some manual git checkout commands in the layers and

want to return to the state defined in repo.conf :

. init-env -s build-<customer>

meta-update -u

meta-update

Other Helpful Scripts

The yocto-ktn/scripts directory contains some more scripts, you might find

helpful:

meta-bump updates your repo.conf . You can set a certain layer to a

specific revision, or you can update all layers to the latest revision by

running the script without any arguments.

meta-status prints information about the current state of the meta

layers.

init-remote2 initializes TFTP, NFS and a webserver on your local machine

to use network boot on your target device and to be able to install

packages on your target from a local pacakge server. It also can get its

configuration from a file. For examples see the 'init-remote_*' files in 'conf'

subdirectory your build directory.

Important

Please note that whenever you run init-env or meta-update and have local changes in one

of the repositories, you can run into problems while the script tries to checkout a certain

revision of the build repository or a meta layer. To resolve these problems, go to the

repository and do one of the following steps, depending on your situation:

Discard your uncomittet changes if you do not need them anymore by running git

checkout -- . or a similar command or

Stash your changes for later reuse, see: git stash or

Commit your changes and if necessary, push them to the remote. You might also want to

update repo.conf afterwards.



1.

2.

3.

1.

2.

3.

https://git-scm.com/docs/git-stash

Using Bitbake

To build a single package, an image for the target or a toolchain, Yocto uses the

bitbake command. Before you can use it, you must set up your build

environment with init-env . See Setting up and using the build environment.

Building a single recipe

To build a single recipe use:

To list all available recipes run:

Building an image

The Kontron BSP provides three basic images:

image-ktn-minimal is a minimal image which simply boots the hardware

image-ktn is a basic console image with utilities for debugging, package-

manager and SSH access.

image-ktn-qt is a image with Qt5/EGLFS support with demo applications.

bitbake <recipe-name>

bitbake -s

Demand of Resources

Please note, that building from scratch can take a long time (several hours!) and needs a lot

of disk space and RAM! Especially when you build images with large libraries like Qt. To build

as much as possible even when a recipe fails you can use the -k option for bitbake.



•

•

•

For information on which image is dedicated to your board, consult your

platform and board documentation by selecting a platform/BSP in the top

navigation dropdown menu.

To build, for example, the image-ktn type

and wait until Yocto finished its work. You can find the image files in the tmp/

deploy/images/<yourmachine> directory of your build repository.

After you have built your image successfully, you now can go on to boot this

image on your machine. For further guidance on this go the documentation of

your specific platform.

Building the SDK for your image

After you have built your image, it is possible to build a SDK which fits your

machine and image contents. For the Kontron Eval-Kits there are already

precompiled SDKs. See Prebuilt BSP Releases for more info.

To create an installer for the toolchain of your board and image combination

type:

For example:

bitbake image-ktn -k

EULA

Depending on the platform, before building an image, you might have to read and accept the

EULA document. Else the build will fail!

See a freshly generated local.conf where to find the license documents and how to accept

them for your board (e.g. set ACCEPT_EULA_stm32mp-t1000-s-multi = "1" in local.conf)



bitbake <image-recipe> -c populate_sdk

bitbake image-ktn -c populate_sdk

For Qt5 development there is a special recipe which contains the tools needed

for Qt5 development:

After you created the toolchain-installer with Yocto, you can find it in the

directory <build-dir>/tmp/deploy/sdk .

The installer is a shell-script, that can be executed like this:

The default installation path is /opt/kontron/ if not specified otherwise.

bitbake meta-toolchain-qt5

Two Different Toolchains/SDKs

meta-toolchain-qt5 and image-ktn-qt are two toolchains with a little difference:

the meta-toolchain-qt5 is one choice when you want to develop a GUI application based

on the Qt framweork. This toolchain contains the biggest set of Qt extensions, but no

additional libraries of your image. It contains the full set of Qt development tools.

the image-* toolchain fits exactly to your image configuration. This toolchain contains,

besides the Qt extensions, all libraries included into your image. This toolchain is the best

choice if you create an application which needs special libraries which are only part of

your image.



•

•

sh ktn-glibc-x86_64-cortexa7t2hf-neon-vfpv4-image-ktn-qt-toolchain-
thud_1.3.1.sh

Modify the BSP

Local or temporary modifications

On the first initialization a local.conf file is created in the conf directory of

your build. This file is usually not tracked by git and is meant to be used only for

local or temporary changes. Please check local.conf and read the comments

in the file to find out about some default options.

The default local.conf file includes the sourcecode-version.conf and

user.conf file if available. sourcecode-version.conf is meant to contain the

sourcecode version number for all sourcecode compiled (can be used as

software release number). It should be kept in sync with repo.conf .

Furthermore the user.conf file is meant to hold user specific settings that

may be different between different developers. One such example is the URL

variable for the package server (PACKAGE_FEED_URIS).

More about BSP-Customization

You can find more specific information and examples in the platform-specific BSP

documentation.



Modifications and Collaboration

If you make any modifications to the BSP yourself and you want to use these changes in your

final product, think about where to save your changes. If you work on a BSP together with KED

engineers, you can use the KED GitLab server for your custom build and meta-layer

repositories.



Create your own layers

If you want to make modifications to the BSP, we suggest to create your own

layers to keep your modifications reproducible and to separate them from

other layers. For customer boards Kontron uses a build-<CUSTOMER>

repository and a meta-<CUSTOMER> layer to keep the modifications for special

customer boards.

The build-<CUSTOMER> repository describes which layers in which version are

required to build the product. It works just like the KED build repositories,

which you can use as a blueprint for your own build repository.

The meta-<CUSTOMER> layer holds all adaptions for the custom hardware and

software. This can be additional recipes or adaptions to some recipes, separate

images, configurations and so on.

Also see the Yocto documentation for creating layers.

Keep Modifications in the Right Place

If you have changes in your local.conf that should not stay local, but need to be set as

default for everyone who uses the build, then find a way to move these changes to the correct

file. Some popular places in the meta layers are:

The image recipe in recipes-core for image-specific settings

The distro config in conf/distro for distro-specific settings

The machine config in conf/machine for machine-specific settings

Recipe of some package for package-specific settings



1.

2.

3.

4.

Contribute to KED layers

If you need to work around a problem in the KED layers by adding code to your own layer,

think about whether you can fix the root of the problem in the KED layer and create a "Merge

Request" with the changes for the KED repository (e.g. meta-ktn).



https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#creating-your-own-layer

Using devtool to work on source code

To work on the source code of any package it is most convenient to use the

devtool utility. As an example we will show how to modify the kernel code.

Example with linux-stm32mp

To start working on the linux-stm32mp code:

A separate workspace layer will be created and the kernel source tree will be

extracted there. Do your code changes and run a build with:

Test your changes and create patches if necessary. To reset to the previous

state and build without the changes in the workspace run:

Devtool

For more information about the substantial devtool , please visit the Yocto Manual.



devtool modify linux-stm32mp

bitbake linux-stm32mp

devtool reset linux-stm32mp

https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#using-devtool-in-your-sdk-workflow

Tools, Apps and Resources

Resources

Prebuilt BSP Releases

You can find prebuilt BSP releases for some boards in https://files.kontron-

electronics.de. Select the subdirectory for your platform to find images, sdk,

open source sourcecode and license texts for your board. Check this location

for new prebuilt software for your Eval-Kit.

Tools, Apps and Demos

The Kontron BSPs include or provide several demo applications and tools,

which can be helpful to get started and to configure your hardware.

ptool

ptool (formerly production-tool.sh) is a set of scripts used to execute tasks

for production purposes, such as flashing firmware to memory, setting boot

configurations or running tests. Depending on the image configuration ptool

might be already installed, but not all tasks might be executable.

To view a list of available tasks, run:

To run a specific task:

e.g to write a rootfs image from SD-card to eMMC:

ptool -h

ptool <task_name>

ptool flash_emmc

https://files.kontron-electronics.de
https://files.kontron-electronics.de

Some more task names are flash_ubi to flash the rootfs image to UBI NAND

flash and flash_bl to flash the bootloader.

C-app-demo

A simple Hello-World application in C.

kontron-demo (QML)

A QML-based demo application, featuring a simple touch UI.

imagegestures and animatedtiles (Qt Widgets)

Two modified Qt examples to show performance of Qt-Widgets-based

applications (also usable without GPU, e.g. on i.MX6UL-based HW).

Web viewer with virtual keyboard

The package webengine-vk contains a simple web browser with integrated

onscreen touch keyboard. After installation with opkg (see Package

Management) the application will autostart after booting. You can load a

specific website or rotate the screen by running the application by launching

the application manually from the command line:

Please note that the web viewer is only capable to display a single page at the

same time. No tab browsing is possible.

> /opt/webengine-vk/webengine-vk rot 180 http://www.kontron-
electronics.de

package-management
package-management

Using the Qt Cross Toolchain and
QtCreator

By using a cross toolchain on your development computer, you can easily

create Qt5 or bare C/C++ applications to run on your Kontron hardware.

Setting up the SDK

To generate a toolchain/SDK that matches the target image, you can run the

populate_sdk task for your image. For example:

There might also be a SDK installer available for your target platform on the.

Kontron server at https://files.kontron-electronics.de.

If you created the toolchain-installer with Yocto, you can find it in the directory

<build-dir>/tmp/deploy/sdk .

The installer is a shell script, that can be executed like this:

The default installation path is /opt/kontron/ if not specified otherwise.

Installing Qt/QtCreator

Check the download page at http://download.qt.io/official_releases/qtcreator

for the latest release of QtCreator and download the qt-creator-opensource-

linux-x86_64-X.X.X.run file.

Install QtCreator by double-clicking the *.run file in the file-manager or by

running:

bitbake image-ktn-qt -c populate_sdk

./ktn-glibc-x86_64-image-ktn-qt-aarch64-toolchain-ktn-zeus_3.0.0-
alpha3.sh

https://files.kontron-electronics.de
http://download.qt.io/official_releases/qtcreator

Alternatively you might also want to consider installing the full Qt environment

for your desktop, including sources, tools and QtCreator. The advantage is, that

apart from the Yocto-based target toolchain, you also have a toolchain

available for your desktop environment. This enables you to switch between

deploying to the target and deploying to your desktop machine for testing.

The online installer for the latest OpenSource edition of Qt can be found here.

Configuring and using QtCreator

For cross development using the Yocto SDK/toolchain, you need to pass the

build environment settings to QtCreator. There are two ways to do this.

Using the helper script (only available in i.MX BSP from version
3.0 on)

The latest versions of the Kontron Yocto Qt SDKs provide a script, that creates

the "Kit" with all the settings within QtCreator. It also copies the build

environment variables to the Kit, so you can easily switch between different

SDKs from within QtCreator and you don't need to source the build

environment before starting QtCreator.

The script can be found in the SDK directory which defaults to /opt/kontron/

<MACHINE>/<VERSION> .

For example:

chmod +x qt-creator-opensource-linux-x86_64-4.11.2.run
./qt-creator-opensource-linux-x86_64-4.11.2.run

http://download.qt.io/official_releases/online_installers/qt-unified-linux-x64-online.run

Manual Setup

Running QtCreator within the build environment

To set the build environment for QtCreator manually you can edit the start

script at <qtcreator-install-dir>/bin/qtcreator.sh (e.g. ~/Qt/Tools/

QtCreator/bin/qtcreator.sh).

Add the following line at the very beginning of the file (before #!/bin/sh) and

change the SDK path and script name accordingly:

This will source the build environment upon starting QtCreator. Please ensure,

that you are always starting QtCreator through the qtcreator.sh script, and not

directly by executing the binary.

You can modify the Ubuntu Launcher icon to make this easier. On Ubuntu 18.04

this should work:

The modification is to add bash -c and an additional .sh to the content of the

Exec variable, so that after clicking on the symbol the script is called:

./qtcreator-setup-helper-armv7vet2hf-neon-ktnsdk-linux
Please enter the path of your QtCreator installation or
press enter for default (~/Qt/Tools/QtCreator):
Using default path ~/Qt/Tools/QtCreator
Created toolchain/compiler with id
'ProjectExplorer.ToolChain.Gcc:ktn-zeus-kontron-mx6ul'
Created debugger with id 'ktn-zeus-kontron-mx6ul'
Created Qt version with id 'ktn-zeus-kontron-mx6ul'
Created kit with id 'ktn-zeus-kontron-mx6ul'

source /path/to/sdk/environment-setup-cortexa9hf-vfp-neon-ktn-
linux-gnueabi

gedit ~/.local/share/applications/org.qt-project.qtcreator.desktop

Exec="bash -c /home/Qt/Tools/QtCreator/bin/qtcreator.sh" %F

Configuring the SDK Kit

Kits can be modified in the Build&Run view (Tools -> Options -> Build &

Run). Here you can configure your kit with:

its name (choose what you want)

the device type (Generic Linux Device for Kontron devices)

the device to be used (see Adding your own device)

the sysroot - headers and libraries for the Yocto firmware (/sysroots/)

cross-compiler (/sysroots/x86*/usr/bin/arm-ktn-linux-gnueabi/arm-*-

g++)

cross-debugger (/sysroots/x86*/usr/bin/arm-ktn-linux-gnueabi/arm-*-

gdb)

Qt version (/sysroots/x86*/usr/bin/qt5/qmake)

The configuration entries for compiler, debugger and Qt version have several

tabs to enter the matching configuration settings. In the kits view you can only

select already predefined settings.

Deploying to the target

Adding your own device

To be able to use the deploy and debugging features within QtCreator with your

own device you can modify an existing configuration or create a new one.

If you want to create a new configuration in QtCreator or modify an existing

one go to Tools -> Options -> Devices and add your device by clicking

Add Choose Generic Linux Device from the drop down menu. Set the

appropriate values for the device name, IP address and the username and

password (if any). The connection can be tested with the Test button in the

devices tab.

•

•

•

•

•

•

•

Deploy to the target device

QtCreator uses sftp and ssh to copy the files and run the application remotely.

The deployment of your files is configured in your qmake project file by setting

the INSTALLS variable. The Kontron demo programs contain some simple

deployment rules. For more information see the Qt/qmake documentation.

Copy files manually to the target

Using the protocols sftp and scp files can be copied to the target. If the target

has the IP address 192.168.0.10 the content of the target can be shown by

using the URL sftp://root@192.168.0.10/ in a browser window.

To copy files via command line the program scp can be used. You can also start

a remote shell on the target via ssh:

Debbuging

If gdbserver is running on the target (default in image-exceet/image-ktn) you

should be able to use the remote debugging features in QtCreator.

If you want to debug QML based applicaitons ensure, that (QML-)debugging is

enabled in the project settings. If you are trying to debug a QML-app and you

get an error message "Invalid Signal", then try to skip the message by clicking

'OK' and the use the button with the green arrow to continue debugging.

Further hints for debugging

Disable optimization

Debugging an optimized binary might be difficult because the compiler may

reorder or optimize away some code. To disable optimization for debugging

ssh root@192.168.0.10
root@192.168.0.10:~

http://doc.qt.io/qt-5/qmake-manual.html

purposes you can set some QMAKE variables in your project file to disable

optimization. But be aware that this might have side effects!

Rejected loading of shared libraries

Loading of shared libraries is sometimes rejected by gdb due to 'insecure path

settings'. Put these gdb commands into your QtCreator configuration for gdb to

disable secure path setting.

You can configure additional start commands for gdb through Tools ->

Options ->

Debugger -> GDB .

Using gdb-multarch (applies to Yocto Morty)

Qt Creator uses so called pretty printers to provide a easy interface to basic Qt

classes like e.g. Qt strings. These pretty printers are implemented with the help

of python functions in gdb. The cross toolchain for the devices may lack some

python libraries Qt creator needs for its pretty printers. To circumvent this use

the gdb-mulitarch debugger of your development machine for remote

debugging (already default for morty). You can install gdb-multiarch on your

development host by running sudo apt install gdb-multiarch .

Qt Environment

Qt offers several options concerning framebuffer, eglfs, input devices, etc. that

can be set via environment variables. Please use this page as a reference for

the available options: Qt for Embedded Linux.

Also check the specific documentation for your platform/BSP, as it may contain

further details for setting up Qt for your device.

 QMAKE_CXXFLAGS_DEBUG += -O0
 QMAKE_CFLAGS_DEBUG += -O0

set auto-load safe-path /

http://doc.qt.io/qt-5/embedded-linux.html

QML Software Rendering

To be able to use QML/QtQuick applications on SoCs without GPU, it is possible

to select the included software renderer. This enables you to use QML/QtQuick

for example on our SoMs with i.MX6UL/ULL. Some features such as shaders,

etc. won't be available and you might experience performance issues,

depending on how your application is designed.

To use the software backend, set QT_QUICK_BACKEND=software in your

environment.

Creating a Yocto recipe for a Qt application

See the Yocto-Dev-Manual for more information on how to write your own

recipe.

You can also consult the meta-ktn layer for examples.

http://doc.qt.io/QtQuick2DRenderer/qtquick2drenderer-limitations.html
http://doc.qt.io/QtQuick2DRenderer/qtquick2drenderer-limitations.html
http://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#new-recipe-writing-a-new-recipe
http://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#new-recipe-writing-a-new-recipe

Contribute

FOSS

Most parts of our software and documentation are open-source. We support

the idea behind FOSS and actively contribute to projects such as Linux, U-Boot

and Yocto/OE.

If you work with our hard- and software or with the documentation, we would

like to encourage you to contribute by reporting issues or sending merge

requests.

Repositories

For a list of public repositories, please see this page on the GitLab server. You

can also have a look at the Git Server Overview in the docs.

Reporting Issues

You can use the GitLab issue trackers for the specific projects to report any

problems you encountered and you think should be known to KED engineers.

Contributing code changes

If you have forked one of the KED repositories and you have implemented

changes that might be relevant or helpful for others, please send a "merge

request" (MR) via GitLab. We will review your changes and merge them if

appropriate.

https://en.wikipedia.org/wiki/Free_and_open-source_software
https://git.kontron-electronics.de/explore/projects?non_archived=true

Upstreaming

We try to work with "mainline"-components wherever possible. We also try to

upstream support for our (demo-/eval-) boards and modules to Linux and U-

Boot eventually. If you work with one of our boards, that is not yet available

upstream and you are interested in upstream support, feel free to contact us at

support@kontron-electronics.de for more information and how to work it out.

mailto:support@kontron-electronics.de

Issue Tracker

Please have a look at the issue tracker on our GitLab server for known bugs and

issues affecting the BSP and also to report any issues you might encounter.

Other Known Issues

NXP i.MX Chip Erratas

IMX6 UltraLight

IMX6 ULL

IMX6 Solo/DualLight

IMX6 Dual/Quad

IMX8M-Mini

Library version mismatches while debugging

Occurence

While cross-debugging (e.g. with QtCreator) you might note messages like

these:

Reasons

The root cause of this is often that the library version in the toolchain, that is

used differs from the one on the target.

Sometimes it can happen, that you use a new image and although nothing has

changed in the library since the previous build of the toolchain, these

•

•

•

•

•

.dynamic section for "/opt/exceet/mx6sexceet/sysroots/cortexa9hf-
vfp-neon-exceet-linux-gnueabi/usr/lib/libQt5Qml.so.5" is not at
the expected address (wrong library or version mismatch?)

https://git.kontron-electronics.de/groups/yocto-ktn/-/issues
https://www.nxp.com/docs/en/errata/IMX6ULCE.pdf
https://www.nxp.com/docs/en/errata/IMX6ULLCE.pdf
https://www.nxp.com/docs/en/errata/IMX6SDLCE.pdf
https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf

messages occur. This is because sometimes paths relative to the build

directory on the build host are compiled into the binaries. If this information

changes, e.g. because the new image was build on an other machine, it might

happen that the addresses in the library files are shifted and though the

content of the library is essentially the same, its structure has slightly

changed, what produces the messages in the debug log.

Measures

This problem has been approached in recent versions of Yocto by trying to strip

all the absolute paths from the target binaries.

Check what caused the changes in the library and decide whether to build/

install a new toolchain or not.

VMware Problems

No log-in possible after booting

Suspend your image. Then start your image again, click immediately into the

window and press the left shift key. Now the boot process will stop and the

Ubuntu boot menu is presented. Choose here to boot in recovery mode.

After the recovery mode is started, choose to resume normal booting. After a

while you will be able to login into Ubuntu.

To fix the problem permanently open the file '/etc/gdm3/custom.conf' with the

editor of your choice (sudo priviliges needed) and uncomment the line saying

'#WaylandEnable=false'. With that fix you should be able to login again after

normal booting.

(Copied from https://askubuntu.com/questions/1149957/unable-to-login-to-

account-in-ubuntu-18-04-vmware-workstation-15-after-update)

	Overview
	Software Licensing
	Licenses of Software Packages
	Typical open-source licenses
	GPLv2 used by the Linux kernel and many other packages
	GPLv3
	LGPLv2.1 used by many libraries
	LGPLv3
	MIT
	BSD
	Proprietary licenses (e.g Freescale/NXP or other HW manufacturers)

	License compliance
	Notification in the manual
	Source code delivery
	Adding own software to your product
	Exemplary text for your manual:
	English:
	German:

	Building Yocto image from source code
	Using Qt in a Product

	Git Server Overview
	KED Yocto Core Repository
	Directory Tree (summary)

	KED Yocto Build Repositories
	Directory Tree (summary)

	KED Yocto Meta Layers
	meta-ktn
	Directory Tree (summary)

	meta-ktn-* (only for BSPs based on "Thud"-branch and later)
	Directory Tree (summary)

	KED Customer Repositories
	Documentation

	Yocto Build System
	Installing Prerequisites
	GitLab Server and Repositories
	Gaining Access to Private Repositories on the KED GitLab Server
	Generating a SSH-key on your Machine
	Adding the SSH-key to your GitLab Account

	Repository and Directory Structure
	Cloning
	Cloning the Core repository (yocto-ktn)
	Cloning Additional Build Repositories

	Initializing the Build Environment
	Examples

	Updating the Repositories
	Other Helpful Scripts

	Using Bitbake
	Building a single recipe
	Building an image
	Building the SDK for your image

	Modify the BSP
	Local or temporary modifications
	Create your own layers
	Using devtool to work on source code
	Example with linux-stm32mp

	Tools, Apps and Resources
	Resources
	Prebuilt BSP Releases

	Tools, Apps and Demos
	ptool
	C-app-demo
	kontron-demo (QML)
	imagegestures and animatedtiles (Qt Widgets)
	Web viewer with virtual keyboard

	Using the Qt Cross Toolchain and QtCreator
	Setting up the SDK
	Installing Qt/QtCreator
	Configuring and using QtCreator
	Using the helper script (only available in i.MX BSP from version 3.0 on)
	Manual Setup
	Running QtCreator within the build environment
	Configuring the SDK Kit

	Deploying to the target
	Adding your own device
	Deploy to the target device
	Copy files manually to the target

	Debbuging
	Further hints for debugging
	Disable optimization
	Rejected loading of shared libraries
	Using gdb-multarch (applies to Yocto Morty)

	Qt Environment
	QML Software Rendering

	Creating a Yocto recipe for a Qt application

	Contribute
	FOSS
	Repositories
	Reporting Issues
	Contributing code changes
	Upstreaming

	Issue Tracker
	Other Known Issues
	NXP i.MX Chip Erratas
	Library version mismatches while debugging
	Occurence
	Reasons
	Measures

	VMware Problems
	No log-in possible after booting

